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Abstract

In this paper, we consider dynamic panel data models with possibly nonstationary
initial conditions. We derive the asymptotic properties of the GMM estimators with
various kinds of instruments when both N and T are large, where N and T denote the
dimensions of the cross section and time series. We find that when initial conditions are
nonstationary and the degree of heterogeneity, which is measured by the variance ratio
of individual effects to the disturbances, is large, the biases and variances of the GMM
estimators become small. We demonstrate that this is because the correlation between the
lagged dependent variable and instruments gets larger due to the unremoved individual
effects. This implies that the instruments become strong when initial conditions are
nonstationary and the degree of heterogeneity is large. For the purpose of comparison,
we also derive the asymptotic properties of the within groups and the LIML estimators.
Numerical studies are conducted to assess the properties of these estimators.
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1 Introduction

In cross-sectional data models, since the famous work of Angrist and Krueger (1991),
the “many instruments” and “weak instruments” problems of the two-stage least squares
(2SLS) estimator, which is a special case of the generalized method of moments (GMM)
estimator, have been intensively discussed.1 However, while there are many studies on the
many/weak instruments problem in the context of cross-sectional data models, not much
research has been conducted in the case of a dynamic panel data model even though this
type of model faces the same problems.2

For the many instruments problem in dynamic panel data models, it is well known
that one of the important features of dynamic panel data models is that the number of
available instruments increases as T , the dimension of the time series, expands. Hence,
when we use large T panel data, a large number of instruments become available. In such
cases, it is suspected that the properties of estimators obtained under large N and fixed
T asymptotics cannot explain the finite sample behavior well, creating the need to assess
the estimators under large N and large T asymptotics.3

There are several studies that provide theoretical discussion of the asymptotic prop-
erties of estimators under large N and large T asymptotics.4 One such study is that
by Alvarez and Arellano (2003). They derived the asymptotic properties of the within
groups (WG), the GMM, the limited information maximum likelihood (LIML) analog,
the non-optimal first-difference GMM, and the random effect pseudo maximum likelihood
(RML) estimators and showed that the WG, GMM, LIML, and RML estimators have a
different order of asymptotic bias. Another study is that by Bun and Kiviet (2006), who
derived the orders of the finite sample bias of several GMM estimators with various kinds
of instruments.5 Yet, another paper that discusses the many instruments problem in dy-
namic panel data models under large N and large T asymptotics is that by Okui (2005b).
Based on Donald and Newey (2001) and Okui (2005a), this work develops a procedure to
select the instruments in order to minimize the mean squared error (MSE) of the GMM
estimator and improves the accuracy of inference. Finally, although not related to the
many instruments problem, Hahn and Kuersteiner’s (2002) study provides an important
contribution. They derived the asymptotic distribution of the maximum likelihood or the
WG estimator and proposed a bias-corrected WG estimator which corrects the bias of
O(T−1) without efficiency loss.

With regard to the weak instruments problem in dynamic panel data models, it is
well known that the first difference GMM estimator of Holtz-Eakin, Newey and Rosen

1For recent studies, see Andrews and Stock (2006) and the papers cited therein.
2An analysis of the many instruments problem in the context of static panel data models with predetermined

variables is provided by Ziliak (1997).
3Recent studies on dynamic panel data estimators under large N and fixed T asymptotics include Hsiao

(2003), Arellano (2003a), and Baltagi (2005).
4As for simulation studies examining the finite sample properties of several dynamic panel estimators when

both N and T are large, an example is Judson and Owen (1999).
5In fact, they consider an asymptotic expansion.
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(1988) and Arellano and Bond (1991) suffers from the weak instruments problem when
persistency is strong and/or the degree of heterogeneity is large (e.g. Blundell and Bond
1998; Blundell, Bond and Windmeijer 2000). Blundell and Bond (1998) therefore propose
to use the system GMM estimator of Arellano and Bover (1995) which does not suffer
from the weak instruments problem even when persistency is strong and is more efficient
than the first difference GMM estimator. Because of these desirable properties, it is a
common strategy in empirical studies to use the system GMM estimator to avoid the
weak instruments problem and improve efficiency.6

However, we should note that all the results mentioned above are derived under the
assumption of (mean) stationary initial conditions, which may not hold in practice.7

Although it is well known that the initial conditions do not matter for long time series, this
is not the case for panel data, the time series dimension of which is usually short. Hence,
the treatment of initial conditions is an important issue in dynamic panel data models.
Recent papers that discuss the initial condition problem are Arellano (2003) and Kiviet
(2007).8 Arellano (2003) provides a comprehensive discussion of the initial conditions
problem, and one of the issues raised that is relevant to this paper is the discussion of
the asymptotic bias of the inconsistent instrumental variables estimator derived from the
invalid moment conditions.9 Kiviet (2007), on the other hand, conducts a large scale
Monte Carlo simulation for the GMM estimators with various kinds of weighting matrices
when initial conditions are nonstationary.

This paper attempts to contribute to the literature on initial conditions in dynamic
panel data models. Specifically, we relax the assumption used in Alvarez and Arellano
(2003) to allow for nonstationary initial conditions, and derive the asymptotic properties
of the GMM estimators using various kinds of instruments. Although this extension
seems to be trivial, it is shown that there are significant differences in the properties of
estimators. Indeed, we show that the strength of instruments is closely related to the
assumption of initial conditions, and that the first difference GMM estimator does not
always suffer from the weak instruments problem even when persistency is strong. In
fact, we show that, in some cases, the instruments becomes strong. In particular, we
investigate the relationship between the initial conditions and the degree of heterogeneity
that is measured by the variance ratio of individual effects to the disturbances. Our focus
is the effect of large heterogeneity on the performance of estimators, an issue that, as
highlighted by Kiviet (2007), has been hardly discussed in the literature.10

We find that if the initial conditions are stationary, the GMM estimators with in-
struments in levels have large bias and variability when the degree of heterogeneity is

6Note that Bun and Windmeijer (2007) show that the system GMM estimator suffers from the weak instru-
ments problem when the degree of heterogeneity is large.

7As is well known, the system GMM estimator is not consistent when initial conditions are nonstationary
since the moment conditions are invalid.

8The first to consider initial conditions in dynamic panel data models is Anderson and Hsiao (1982).
9See Sections 6.4 and 6.5 in Arellano (2003).

10Some exceptions are Bun and Kiviet (2006) and Hayakawa (2007a), which theoretically discuss the rela-
tionship between the finite sample bias of several estimators and the degree of heterogeneity.
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large, i.e., when the variance ratio of the individual effects to the disturbances is large.
This result is consistent with the literature (see Bun and Kiviet (2006) and Hayakawa
(2007)). However, in the case of nonstationary initial conditions, we show that the GMM
estimators with instruments in levels have small bias and variability when the degree of
heterogeneity is large. We demonstrate that when initial conditions are nonstationary, an
additional correlation between the lagged dependent variable and instruments appears.
Especially, we find that, when the degree of heterogeneity is large, the instruments become
strong. Also, we find that, when the degree of heterogeneity is not so large, instruments
may be weak, depending on initial conditions. For the GMM estimators with instruments
in first difference or backward orthogonal deviation (BOD), they are not affected by the
degree of heterogeneity when initial conditions are stationary, while their performance
may improve when initial conditions are nonstationary and the degree of heterogeneity is
large.

For the purpose of comparison, we also derive the asymptotic properties of the WG
estimator and the LIML analog estimators with the same kinds of instruments as the
GMM estimators. As a result, we find that although the WG estimator is not affected by
the degree of heterogeneity in the case of stationary initial conditions, a large degree of
heterogeneity helps the WG estimator to have a small bias. This feature causes a problem
in the bias-corrected WG estimator of Hahn and Kuersteiner (2002). Since, as will be
described, the bias corrected WG estimator has the correction term 1/T , it is upwardly
biased by construction when the initial conditions are nonstationary and the degree of
heterogeneity is large. With regards to the LIML estimators, similar results are found as
in the case of the GMM estimators. With stationary initial conditions, the performance
of the LIML estimators with instruments in levels are negatively affected if the degree
of heterogeneity is large. However, with nonstationary initial conditions, the bias and
variability of the LIML estimators with instruments in levels become quite small when
the degree of heterogeneity is large. We also find that the GMM and LIML estimators
with instruments in backward orthogonal deviation have the same asymptotic properties.

The remainder of this paper is organized as follows. Section 2 introduces the model and
the assumptions and defines the GMM estimator. Section 3 investigates the effect of the
degree of heterogeneity and initial conditions on the GMM estimators with instruments in
levels. Section 4 considers the removal of the individual effects from the instruments and
derives the asymptotic properties of the GMM estimators. Section 5 derives the asymp-
totic properties of the WG and LIML estimators for the purpose of comparison. Section 6
then reports Monte Carlo simulation results to assess the theoretical implications. Finally,
Section 7 provides some concluding remarks.

Note that throughout the paper, T∗ denotes T − 1 or T − 2 when the range of a
summation in estimators is t = 1, ..., T − 1 or t = 2, ..., T − 1, respectively. All the proofs
of theorems are included in the appendix.

4



2 The model, the assumptions, and the GMM

estimator

We consider an AR(1) panel data model given by

yit = αyi,t−1 + ηi + vit, i = 1, ...,N and t = 1, ..., T (1)

where α is the parameter of interest with |α| < 1 and vit has mean zero given ηi, yi0, ..., yi,t−1.11

We assume that yi0 is observable. By letting xit = yi,t−1, yi = (yi,1, ..., yi,T )′, xi =
(xi,1, ..., xi,T )′, ιT = (1, ..., 1)′ and vi = (vi,1, ..., vi,T ), (1) can be expressed in a vector form
as follows:

yi = αxi + ηiιT + vi. (2)

To define the GMM estimator, let us define the forward orthogonal deviation (FOD)
transformation matrix F as follows:

F = diag

[√
T − 1
T

, ...,

√
1
2

]
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 − 1
T−1 − 1

T−1 · · · − 1
T−1 − 1

T−1 − 1
T−1

0 1 − 1
T−2 · · · − 1

T−2 − 1
T−2 − 1

T−2
...

...
...

...
...

...
0 0 0 · · · 1 −1

2 −1
2

0 0 0 · · · 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (3)

F is a (T −1)×T matrix such that F ′F = QT and FF ′ = IT−1, where QT = IT − ιT ι′T /T .
Premultiplying F in (2), we have

y∗i = αx∗i + v∗i , (4)

where y∗i = Fyi, x∗i = Fxi, and v∗i = Fvi. The t-th element of v∗i is given by

v∗it = ct

[
vi,t − 1

T − t
(vi,t+1 + · · · + vi,T )

]
, t = 1, ..., T − 1 (5)

where c2t = (T − t)/(T − t+ 1).
Next, we define the GMM estimator. Let zit be a generic instruments vector that is

orthogonal to v∗it. Then, the GMM estimator can be written as12

α̂G =
x∗′My∗

x∗′Mx∗
=
∑T−1

t=1 x
∗′
t Mty

∗
t∑T−1

t=1 x
∗′
t Mtx∗t

=
∑T−1

t=1 x∗′t Mtx
∗
t · α̂2SLS,t∑T−1

t=1 x
∗′
t Mtx∗t

, (6)

where x∗t = (x∗1t, ..., x
∗
Nt)

′, y∗t = (y∗1t, ..., y
∗
Nt)

′, Mt = Zt(Z ′
tZt)−1Z ′

t, Zt = (z1t, ..., zNt)′, and
α̂2SLS,t = (x∗′t Mty

∗
t )/(x

∗′
t Mtx

∗
t ).

13 Note that α̂G can be written as a weighted sum of the

11Here, we limit ourselves to a simple stable AR(1) model. Possible extensions are discussed in the conclusion.
12We do not employ the level (Arellano and Bover, 1995) or the system (Arellano and Bover 1995; Blundell

and Bond 1998) GMM estimators because these GMM estimators are known to be inconsistent under large N
and fixed T asymptotics when initial conditions are nonstationary.

13When the invertibility condition of Z ′Z, i.e., N ≥ T − 1, does not hold, we can use the Moore-Penrose
inverse. For a detailed discussion of this problem, see Alvarez and Arellano (2003).
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cross section 2SLS estimator at time t, α̂2SLS,t. This implies that the properties of α̂G

are closely related to those of α̂2SLS,t.

To derive the asymptotic properties of the GMM estimator, we impose the following
assumptions that relax those of Alvarez and Arellano (2003):

Assumption 1. {vit} (t = 1, ..., T ; i = 1, ...,N) are i.i.d across time and individuals and
independent of ηi and yi0 with E(vit) = 0, var(vit) = σ2

v, and finite moments up to the
fourth order.

Assumption 2. The initial observations satisfy

yi0 = δ

(
ηi

1 − α

)
+ wi0 for i = 1, ...,N (7)

= δμi + wi0, (8)

where wi0 is wi0 =
∑∞

j=0 α
jvi,−j and is independent of ηi, and μi = ηi/(1 − α).

Assumption 3. ηi are i.i.d across individuals with E(ηi) = 0, var(ηi) = σ2
η, and finite

moments up to the fourth order.

Assumptions 1 and 3 are identical to those of Alvarez and Arellano (2003). Assumption
2 allows yit to be nonstationary in the sense that the conditional mean of yit given ηi

depends on t.14 In fact, under Assumption 2, yit can be expressed as

yit =
[
1 − (1 − δ)αt

]
μi + wit (9)

= μ∗it + wit, (10)

where wit =
∑∞

j=0 α
jvi,t−j and μ∗it =

[
1 − (1 − δ)αt

]
μi. The conditional mean of yit given

ηi is

E(yit|ηi) =
1 − (1 − δ)αt

1 − α
ηi. (11)

Thus, we find that when δ �= 1, yit is nonstationary due to the dependence on t, and
when δ = 1, yit is stationary. Therefore, we extend Alvarez and Arellano (2003) to allow
nonstationary initial conditions.

This extension to allow for nonstationary initial conditions has important implications
for empirical analyses. For example, when we consider a cross-country panel data set that
begins after a war or another large historical event, it is unlikely that initial conditions
are distributed according to the steady state (Barro and Sala-i-Martin, 1995). Another
example of nonstationary initial conditions is young workers or new firms, for whom initial
conditions have little relation to steady state conditions (Hause, 1980).

14Note that this type of initial conditions is also used by Arellano (2003) and Kiviet (2007).

6



3 The asymptotic properties of GMM estimators

with instruments in levels

3.1 The GMM estimator with all instruments in levels

Let us define α̂G,l1 as the GMM estimator with instruments zit = zl1
it = (yi0, ..., yi,t−1)′ as

follows:

α̂G,l1 =
∑T−1

t=1 x
∗′
t M

l1
t y

∗
t∑T−1

t=1 x
∗′
t M

l1
t x

∗
t

, (12)

where M l1
t = Z l1

t (Z l1′
t Z l1

t )−1Z l1′
t and Z l1

t = (zl1
1t, ..., z

l1
Nt)

′.
The following lemma is used to derive the asymptotic properties of α̂G,l1:

Lemma 1. Let Assumptions 1–3 hold. Then, we have

(a)
1√
NT∗

T−1∑
t=1

E(x∗
′

t M
l1
t v

∗
t ) = − T√

NT∗
σ2

v

1 − α

[
1 − 1

T (1 − α)

T∑
t=1

1 − αt

t

]
= μG,l1,

(b)
1

NT∗

T−1∑
t=1

x∗
′

t M
l1
t x

∗
t

p−−−−−→
N → ∞

RG,l1
T .

Moreover, as both N and T tend to infinity, provided (log T )2/N → 0, we have

(c) var

(
1√
NT∗

T−1∑
t=1

x∗
′

t M
l1
t v

∗
t

)
−−−−−−−→
N, T → ∞

σ4
v

1 − α2
,

(d)
1

NT∗

T−1∑
t=1

x∗
′

t M
l1
t x

∗
t

p−−−−−−−→
N, T → ∞

(
σ2

v

1 − α2

)
,

where

RG,l1
T =

σ2
v

T∗

T−1∑
t=1

ψ2
t

[
1

1 − α2
− 2λ(1 − δ)αt−1[1 − (1 − δ)αt−1] + λ2(1 − δ)2α2(t−1)qt

− λ

1 + λqt

{
[1 − (1 − δ)αt−1] − λ(1 − δ)αt−1qt

}2
]
,

σ2
μ = var(μi) =

σ2
η

(1 − α)2
,

λ =
σ2

μ

σ2
v

=
1

(1 − α)2
σ2

η

σ2
v

,

qt = 1 − α2 + (t− 1)(1 − α)2 − (1 − δ2)(1 − α2),

ψt = ct

(
1 − αφT−t

T − t

)
,

φj =
1 − αj

1 − α
.

Theorem 1. Let Assumptions 1–3 hold. Then, as both N and T tend to infinity, provided
(log T )2/N → 0, we have

α̂G,l1
p−→ α. (13)
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Moreover, provided T/N → c, (0 ≤ c <∞), we have√
NT∗(α̂G,l1 − α−BG,l1)

d−→N (0, 1 − α2), (14)

where

BG,l1 =
1√
NT∗

μG,l1

RG,l1
T

= O

(
1
N

)
. (15)

In relation to the above, we provide the following remarks.

Remark 1. Although, as is well known, the initial conditions do not matter when T is
large, this is not the case here, since BG,l1 can be seen as a finite sample bias which is
naturally affected by the initial conditions.

Remark 2. Hahn and Kuersteiner (2002) show that if we further assume normality on
vit, then N (0, 1−α2) is the minimal asymptotic distribution. Hence, (1−α2) is the lower
bound of the asymptotic variance when both N and T are large under the assumption of
normality on vit.

Remark 3. In the case of δ = 1, we find that RG,l1
T is bounded when λ → ∞.15 This

result is related to the evaluation of the asymptotic bias and variance. From (15), we
find that the asymptotic bias is bounded, i.e., 0 < BG,l1 < ∞ for any λ, including zero
and infinity. Although the asymptotic variance under large N and large T asymptotics is
not affected by the degree of heterogeneity, that under large N and fixed T asymptotics,
given by σ2

v/R
G,l1
T , depends on the degree of heterogeneity despite it being bounded even

when λ is large.
Further, using Lemma 1(d), (14) can be alternatively expressed as follows:√
NT∗

[
α̂G,l1 −

(
α− 1

N
(1 + α)

)]
d−→N (

0, 1 − α2
)
. (16)

This is the result derived by Alvarez and Arellano (2003).

Remark 4. In the case of δ �= 1, we find that for given N and T , as λ→ ∞, RG,l1
T → ∞,

Bl1 → 0. Therefore, large heterogeneity makes the GMM estimator, α̂G,l1, to have a small
bias under nonstationary initial conditions. Note that this result is in conflict with the
one obtained by Bun and Kiviet (2006), who imposed mean stationarity. Further, note
that the asymptotic variance under large N and large T asymptotics is not affected by
the degree of heterogeneity, unlike that under large N and fixed T asymptotics, which is
given by σ2

v/R
G,l1
T . In fact, we find that the asymptotic variance under large N and fixed

T asymptotics tends to zero as λ → ∞. This difference arises since the terms associated
with λ vanish asymptotically as T → ∞.

15Although λ is finite in practice, we use this notation to indicate that λ becomes large.
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Remark 5. The intuition behind the result of Remark 3 is that when initial conditions
are nonstationary, instruments become strong as λ gets larger. To see this, consider the
following cross section 2SLS regression at time t:

y∗it = αx∗it + v∗it i = 1, ...,N (17)

x∗it = π′tz
l1
it + εit (18)

As is well known, the correlation between x∗it and zl1
it plays a very important role for

the performance of the 2SLS estimator α̂l1
2SLS,t = x∗′t M

l1
t y

∗
t /x

∗′
t M

l1
t x

∗
t . Since x∗it can be

written as

x∗it = ψt

[
wi,t−1 − (1 − δ)αt−1μi

]− ctṽitT (19)

where

ψt = ct

(
1 − αφT−t

T − t

)
, (20)

ṽitT =
φT−tvit + · · · + φ1vi,T−1

T − t
, (21)

φj =
1 − αj

1 − α
= 1 + α+ · · · + αj−1, (22)

we find that the individual effect μi is removed from x∗it when δ = 1, while this is not the
case when δ �= 1. Using (19), we have

E(x∗itz
l1
it ) = ψtE[wi,t−1z

l1
it ] − (1 − δ)ψtα

t−1E[μiz
l1
it ] (23)

= “idiosyncratic part” + “individual effects part” (24)

From (23), we find that the correlation between x∗it and zl1
it is composed of only the

idiosyncratic term when δ = 1, while it is composed of the “idiosyncratic part” and the
“individual effects part” when δ �= 1. This implies that nonstationary initial conditions
provide an additional correlation between x∗it and zl1

it through individual effects. However,
we have to investigate the “individual effects part” carefully since it can be negative, while
the “idiosyncratic part” is always positive. When δ > 1, since the “individual effects part”
is always positive, E[x∗itz

l1
it ] gets larger as σ2

μ grows. However, when δ < 1, E(x∗itz
l1
it ) might

be close to zero since the “idiosyncratic part” is positive while the “individual effects part”
is negative. In this case, the instruments may be weak. However, if λ is large enough,
the “individual effects part” becomes much smaller than the “idiosyncratic part” and
E(x∗itz

l1
it ) can be large in absolute value. Therefore, when λ is large, the instruments

become strong regardless of δ > 1 or δ < 1.16

Finally, although these properties are obtained for the cross section 2SLS estimator at
time t, α̂l1

2SLS,t, similar properties will carry over to α̂G,l1, since these properties do not
depend on time t and α̂G,l1 is a weighted sum of cross section 2SLS estimators as in (6).

16Although, following Bun and Windmeijer (2007), this statement can be explained by deriving the concen-
tration parameter that measures the strength of instruments, we do not report the results to save space.
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Although α̂G,l1 has some desirable properties, that is, consistency and asymptotic
normality, as shown in Okui (2005b) and Section 6 below, the size distortion of the test
for the hypothesis H0 : α = αo, where αo is the true value, is very large. We suspect that
the source of the size distortion is the bias that results from using all the instruments.
Therefore, we expect that reducing the number of instruments will mitigate this problem
because as per the literature on cross-sectional data models, using fewer instruments
reduces the bias of the estimator.

3.2 The GMM estimator with a reduced number of instru-

ments in levels

Let us define α̂G,l2 as the GMM estimator with instruments zit = zl2
it = yi,t−1 as follows:

α̂G,l2 =
∑T−1

t=1 x
∗′
t M

l2
t y

∗
t∑T−1

t=1 x
∗′
t M

l2
t x

∗
t

, (25)

where M l2
t = Z l2

t (Z l2′
t Z l2

t )−1Z l2′
t and Z l2

t = (zl2
1t, ..., z

l2
Nt)

′.

Lemma 2. Let Assumptions 1–3 hold. Then, we have

(a)
1√
NT∗

T−1∑
t=1

E(x∗
′

t M
l2
t v

∗
t ) = − 1√

NT∗
σ2

v

1 − α

(
1 − φT−1

T − 1

)
= μG,l2,

(b)
1

NT∗

T−1∑
t=1

x∗
′

t M
l2
t x

∗
t

p−−−−−→
N → ∞

RG,l2
T .

Moreover, as both N and T tend to infinity,

(c) var

(
1√
NT∗

T−1∑
t=1

x∗
′

t M
l2
t v

∗
t

)
−−−−−−−→
N, T → ∞

ρl2

(
σ4

v

1 − α2

)
,

(d)
1

NT∗

T−1∑
t=1

x∗
′

t M
l2
t x

∗
t −−−−−−−→

N, T → ∞
ρl2

(
σ2

v

1 − α2

)
,

where

RG,l2
T =

σ2
v

T∗

T−1∑
t=1

ψ2
t

[
1

1−α2 − λ(1 − δ)αt−1
{
1 − (1 − δ)αt−1

}]2
1

1−α2 + λ [1 − (1 − δ)αt−1]2
,

ρl2 =
[
1 + λ(1 − α2)

]−1
.

Remark 6. In the case of δ �= 1, there is a substantial difference in the convergence of
x∗′M l2x∗/NT . Under large N and fixed T asymptotics, RG,l2

T → ∞ as λ→ ∞. However,
under large N and large T asymptotics, ρl2σ

2
v/(1 − α2) → 0 as λ→ ∞. As shown below,

this difference plays an important role in assessing the asymptotic variance.

Theorem 2. Let Assumptions 1–3 hold. Then, we have

α̂G,l2
p−→ α,

10



√
NT∗(α̂G,l2 − α−BG,l2)

d−→N
(
0, (1 − α2)ρ−1

l2

)
, (26)

where

BG,l2 =
1√
NT∗

μG,l2

RG,l2
T

= O

(
1
NT

)
.

Remark 7. Note that the conditions (log T )2/N → 0 and T/N → c, (0 ≤ c <∞), which
are imposed in Theorem 1, are unnecessary in Theorem 2. This is because the number
of instruments zl2

it grows at rate T , not T 2 like zl1
it , and we do not have terms of order

(logN)2/T and T/N . This implies that we do not need to impose conditions on the
relative speed of N and T . This is also true for the two cases that will be discussed in the
next section.

Remark 8. In the case of δ = 1, as λ→ ∞, RG,l2
T → 0 for given N and T ; this indicates

that as λ → ∞, BG,l2 → ∞. The asymptotic variance also becomes substantial when
λ is large. This indicates that if we use a smaller number of instruments to reduce the
bias arising from the use of many instruments, then a bias due to large heterogeneity may
appear. To examine this more precisely, we derive the following alternative expression of
(26), using Lemma 2(d):√

NT∗
[
α̂G,l2 −

(
α− 1

NT∗
(1 + α)ρ−1

l2

)]
−→N (

0, (1 − α2)ρ−1
l2

)
. (27)

Comparing (16) and (27), we find that if T∗ < ρ−1
l2 , the asymptotic bias of α̂G,l2 will be

larger than that of α̂G,l1, although α̂G,l2 uses a smaller number of instruments than α̂G,l1.
Hence, if a large degree of heterogeneity is present, reducing the number of instruments
to decrease the bias may not work well. Furthermore, the asymptotic variance becomes
quite large.

Remark 9. In the case of δ �= 1, as λ → ∞, RG,l2
T → ∞; this indicates that, for given

N and T , BG,l2 → 0 as λ → ∞. The intuitive reason for this is similar to the case
of α̂G,l1.17 Further, we find that the asymptotic variance under large N and large T

asymptotics tends to infinity. However, the asymptotic variance under large N and fixed
T asymptotics, given by σ2

v/R
G,l2
T , tends to zero when λ→ ∞. This difference stems from

the fact that the terms associated with λ vanish asymptotically when T → ∞ as in the
case of α̂G,l1. From the simulation studies in Okui (2005b), we expect that the asymptotic
variance under large N and fixed T asymptotics captures the finite sample behavior more
closely than the variance under large N and large T asymptotics.

4 Removing the individual effects from the in-

struments

Since the asymptotic distribution of α̂G,l2 under stationary initial conditions is heavily
affected by the degree of heterogeneity arising from the instruments, we expect that if we

17See Remark 5.
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use the instruments without the individual effects, the GMM estimator will not be affected
by the degree of heterogeneity. Therefore, we consider the removal of the individual effects
from the instruments. We employ two methods to do so. The first involves simply taking
the first-difference. In the second method, we use a transformation known as the backward
orthogonal deviation (BOD) transformation. The BOD transformation is a modification
of the FOD transformation. While the FOD transformation induces a deviation from the
mean of all future values, the BOD transformation induces a deviation from the mean of
all past values. To rid the instruments of the individual effects, we only have to multiply
the following matrix by xi:

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 · · · 0 0 0
−1

2 −1
2 1 · · · 0 0 0

...
...

...
...

...
...

− 1
T−2 − 1

T−2 − 1
T−2 · · · − 1

T−2 1 0
− 1

T−1 − 1
T−1 − 1

T−1 · · · − 1
T−1 − 1

T−1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (28)

By multiplying above matrix by xi, we get the following expression:

yb
i,t−1 = yi,t−1 − yi,0 + · · · + yi,t−2

t− 1
t = 2, ..., T − 1 (29)

=
(
wi,t−1 − wi,t−2 + · · · + wi,0

t− 1

)
− (1 − δ)

(
αt−1 − φt−1

t− 1

)
μi. (30)

Thus, under the assumption of stationary initial conditions, i.e., δ = 1, yb
i,t−1 no longer

has individual effects. This method is known as the recursive mean adjustment method
in the context of a pure time series model (So and Shin, 1999), and is considered in
Hayakawa (2007b) in the context of the instrumental variable (IV) estimation of panel
AR(p) models.18

The GMM estimators with instruments zit = zd2
it = Δyi,t−1 and zit = zb2

it = yb
i,t−1 are

defined as follows:19

α̂G,d2 =
∑T−2

t=2 x
∗′
t M

d2
t y∗t∑T−2

t=2 x
∗′
t M

d2
t x∗t

, (31)

α̂G,b2 =
∑T−2

t=2 x
∗′
t M

b2
t y∗t∑T−2

t=2 x
∗′
t M

b2
t x∗t

, (32)

where Md2
t = Zd2

t (Zd2′
t Zd2

t )−1Zd2′
t , Zd2

t = (zd2
1t , ..., z

d2
Nt)

′, M b2
t = Zb2

t (Zb2′
t Zb2

t )−1Zb2′
t , and

Zb2
t = (zb2

1t , ..., z
b2
Nt)

′.
Asymptotic properties of these two estimators are given in the following lemmas and

theorems.

18Hayakawa (2007b) shows that yb
i,t−1 is asymptotically equivalent to the infeasible optimal instruments, and

the IV estimator using yb
i,t−1 as instruments has the same asymptotic distribution as the infeasible optimal IV

estimator when both N and T are large.
19We do not consider the case where all instruments are used since it is suspected that inference would be

unreliable as for the case of α̂G,l1.
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Lemma 3. Let Assumptions 1–3 hold. Then, we have

(a)
1√
NT∗

T−1∑
t=2

E(x∗
′

t M
d2
t v∗t ) = − 1√

NT∗
σ2

v

1 − α

(
1 − φT−2

T − 2

)
= μG,d2,

(b)
1

NT∗

T−1∑
t=2

x∗
′

t M
d2
t x∗t

p−−−−−→
N → ∞

RG,l2
T .

Moreover, as both N and T tend to infinity,

(c) var

(
1√
NT∗

T−1∑
t=2

x∗
′

t M
d2
t v∗t

)
−−−−−−−→
N, T → ∞

ρd2

(
σ4

v

1 − α2

)
,

(d)
1

NT∗

T−1∑
t=2

x∗
′

t M
d2
t x∗t

p−−−−−−−→
N, T → ∞

ρd2

(
σ2

v

1 − α2

)
,

where

RG,d2
T =

σ2
v

T∗

T−1∑
t=2

ψ2
t

[
1

1+α − λ(1 − δ)2(1 − α)α2t−3
]2

2
1+α + λ(1 − δ)2(1 − α2)α2(t−2)

, (33)

ρd2 =
1 − α

2
. (34)

Theorem 3. Let Assumptions 1–3 hold. Then, as both N and T tend to infinity, we have

α̂G,d2
p−→ α, (35)

√
NT∗(α̂G,d2 − α−BG,d2)

d−→N (
0, (1 − α2)ρ−1

d2

)
, (36)

where

BG,d2 =
1√
NT∗

μG,d2

Rd2
T

= O

(
1
NT

)
. (37)

Lemma 4. Let Assumptions 1–3 hold. Then, we have

(a)
1√
NT∗

T−1∑
t=2

E(x∗
′

t M
b2
t v

∗
t ) = μG,d2 = μG,b2,

(b)
1

NT∗

T−1∑
t=2

x∗
′

t M
b2
t x∗t

p−−−−−→
N → ∞

RG,b2
T .

Moreover, as both N and T tend to infinity,

(c) var

(
1√
NT∗

T−1∑
t=2

x∗
′

t M
b2
t v∗t

)
−−−−−−−→
N, T → ∞

σ4
v

1 − α2
,

(d)
1

NT∗

T−1∑
t=2

x∗
′

t M
b2
t x

∗
t

p−−−−−−−→
N, T → ∞

(
σ2

v

1 − α2

)
,

where

RG,b2
T =

σ2
v

T∗

T−1∑
t=2

ψ2
t

�
1

1−α2

�
1−αφt−1

t−1

�
+λ(1−δ)2αt−1

�
αt−1−φt−1

t−1

��2
1

1−α2

�
1− 2αφt−1

t−1
+ 1

(t−1)2

�
(t−1)(1+α)

1−α
− 2α(1−αt−1)

(1−α)2

��
+λ(1−δ)2

�
αt−1−φt−1

t−1

�2 .

13



Theorem 4. Let Assumptions 1–3 hold. Then, as both N and T tend to infinity, we have

α̂G,b2
p−→ α, (38)

√
NT∗(α̂G,b2 − α−BG,b2)

d−→N (0, 1 − α2), (39)

where

BG,b2 =
1√
NT∗

μG,b2

RG,b2
T

= O

(
1
NT

)
. (40)

Remark 10. When δ = 1, we find that RG,d2
T , RG,b2

T , BG,d2, and BG,b2 are not affected
by λ. Using Lemmas 3(d) and 4(d), we have√

NT∗
[
α̂G,d2 −

(
α− 1

NT∗
(1 + α)ρ−1

d2

)]
d−→N (

0, (1 − α2)ρ−1
d2

)
, (41)

√
NT∗

[
α̂G,b2 −

(
α− 1

NT∗
(1 + α)

)]
d−→N (

0, 1 − α2
)
. (42)

We find that the asymptotic biases and variances of α̂G,d2 and α̂G,b2 are not affected by
the degree of heterogeneity. However, there is a notable difference both in the asymptotic
biases and in the variances of α̂G,d2 and α̂G,b2. Since ρ−1

d2 is strictly larger than one, both
the asymptotic bias and variance of α̂G,d2 are strictly larger than those of α̂G,b2. Therefore,
we can state that α̂G,b2 is superior to α̂G,d2. Furthermore, the asymptotic variance of α̂G,d2

is strictly larger than the lower bound and can never be efficient. However, the asymptotic
variance of α̂G,b2 is equal to the lower bound, and hence α̂G,b2 is asymptotically efficient
when vit is normally distributed. However, it is noteworthy that although α̂G,l1 becomes
asymptotically efficient by using all instruments, α̂G,b2 is asymptotically efficient by using
a smaller number of instruments. This implies that instruments that are not used, i.e.,
(yb

i,2, ..., y
b
i,t−2), are asymptotically redundant.

Remark 11. When δ �= 1, as λ→ ∞, RG,d2
T , RG,b2

T → ∞. This indicates that as λ→ ∞,
BG,d2, BG,b2 → 0 for given N and T . The intuition behind this result is similar to the
case of α̂G,l1. Further, note that the asymptotic variances of α̂G,d2 and α̂G,b2 under large
N and large T asymptotics are not affected by the degree of heterogeneity, unlike those
under large N and fixed T asymptotics. In fact, the asymptotic variances under large N
and fixed T asymptotics, given by σ2

v/R
G,d2
T and σ2

v/R
G,b2
T , tend to zero as λ→ ∞.

5 A comparison of the GMM, WG and LIML es-

timators

In this section, we derive the asymptotic properties of the WG and LIML (analog) esti-
mators with possibly nonstationary initial conditions and investigate whether the results
are similar to those of the GMM estimators.
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5.1 The (bias-corrected) within groups estimator

The WG estimator is the OLS estimator of (4) and can be written as follows:

α̂wg =
x∗′y∗

x∗′x∗
=
∑N

i=1 x
′
iQT yi∑N

i=1 x
′
iQTxi

, (43)

where x∗ = (x∗′1 , ..., x∗
′

N )′ and y∗ = (y∗′1 , ..., y
∗′
N )′.

Hahn and Kuersteiner (2002) proposed a bias-corrected WG estimator of the form

α̂hk =
T + 1
T

α̂wg +
1
T
. (44)

Note that α̂hk corrects for the bias of order T−1.
To derive the asymptotic properties of the WG estimator, the following lemma is

useful.

Lemma 5. Let Assumptions 1–3 hold. Then, we have

(a) E

(
x∗′x∗

NT

)
=

σ2
v

1 − α2
− 1
T

σ2
v

1 − α2

[
1 + α

1 − α
− 1
T

2α(1 − αT )
(1 − α)2

]

+
σ2

μ(1 − δ)2

T

[
1 − α2T

1 − α2
− 1
T

(
1 − αT

1 − α

)2
]

(45)

= Rwg
T −−−−−→

T → ∞
σ2

v

1 − α2
, (46)

(b) E

(
x∗′v∗

NT

)
= − 1

T

(
σ2

v

1 − α

)[
1 − 1

T

(
1 − αT

1 − α

)]
,

(c) var

(
1√
NT

x∗
′
v∗
)

−−−−−→
T → ∞

σ4
v

1 − α2
.

The following theorem establishes the asymptotic properties of the WG estimator with
possibly nonstationary initial conditions.

Theorem 5. Let Assumptions 1–3 hold. Then, as T → ∞, regardless of whether N is
fixed or tends to infinity, we have

α̂wg
p−→ α,

√
NT (α̂wg − α−Bwg)

d−→N (0, 1 − α2),

where

Bwg = −
1+α
T − 1

T 2
(1+α)(1−αT )

1−α

1 − 1
T

{
1+α
1−α − 1

T
2α(1−αT )

(1−α)2

}
+ 1

T λ(1 − δ)2
{

1 − α2T − 1
T

(1+α)(1−αT )2

1−α

} .
Theorem 5 extends the result of Arellano (2003a, p.86) who only considers the case of
T = 2.
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Remark 12. Under the assumption of stationary initial conditions, i.e., δ = 1, we find
that α̂wg is not affected by the degree of heterogeneity. In this case, the bias-corrected
estimator of Hahn and Kuersteiner (2002), α̂hk, works well since α̂wg has a bias of order
O(T−1) for any value of λ.

Remark 13. Under the assumption of nonstationary initial conditions, i.e., δ �= 1, we find
that as λ→ ∞, Bwg → 0. This implies that large heterogeneity makes the WG estimator
to have a smaller bias provided that the initial conditions are nonstationary. The intuition
behind this result is that nonstationary initial conditions make E(x∗′x∗/NT ), which is the
denominator of Bwg, larger as λ grows since the third term in (45) is positive. Therefore,
when there is large heterogeneity, α̂hk does not work well since it has the positive bias
1/T by construction. Further, note that this result conflicts with Bun and Kiviet’s (2006)
result, obtained under mean stationarity, that the bias of the WG estimator is not affected
by the degree of heterogeneity. This difference comes from the fact that, when initial
conditions are nonstationary, the within-group transformation does not completely remove
the individual effects and the properties are affected by the distribution of the individual
effects.20

5.2 The LIML estimator

Let zit be a generic instruments vector that is orthogonal to v∗it. Then, the non-robust
LIML analog estimator considered by Alonso-Borrego and Arellano (1999) and Alvarez
and Arellano (2003) takes the following form:

α̂L =
x∗′My∗ − ̂x∗′y∗

x∗′Mx∗ − ̂x∗′x∗
=
∑T−1

t=1 x
∗′
t Mty

∗
t − ̂

∑T−1
t=1 x∗′t y

∗
t∑T−1

t=1 x
∗′
t Mtx∗t − ̂

∑T−1
t=1 x∗′t x

∗
t

, (47)

where ̂ is the minimum eigenvalue of W ∗′MW ∗(W ∗′W ∗)−1 with W ∗ = (y∗, x∗). If we set
zit to be zl1

it , z
l2
it , z

d2
it , and zb2

it , then the corresponding LIML estimators can be defined as
follows:

α̂L,l1 =
∑T−1

t=1 x∗′t M
l1
t y

∗
t − ̂l1

∑T−1
t=1 y∗′t x

∗
t∑T−1

t=1 x
∗′
t M

l1
t x

∗
t − ̂l1

∑T−1
t=1 x∗′t x

∗
t

, (48)

α̂L,l2 =
∑T−1

t=1 x∗′t M
l2
t y

∗
t − ̂l2

∑T−1
t=1 x∗′t y

∗
t∑T−1

t=1 x
∗′
t M

l2
t x

∗
t − ̂l2

∑T−1
t=1 x∗′t x

∗
t

, (49)

α̂L,d2 =
∑T−1

t=2 x∗′t M
d2
t y∗t − ̂d2

∑T−1
t=2 x∗′t y

∗
t∑T−2

t=2 x
∗′
t M

d2
t x∗t − ̂d2

∑T−1
t=2 x∗′t x

∗
t

, (50)

α̂L,b2 =
∑T−1

t=2 x
∗′
t M

b2
t y∗t − ̂b2

∑T−1
t=2 x

∗′
t x

∗
t∑T−2

t=2 x
∗′
t M

b2
t x∗t − ̂b2

∑T−1
t=2 x

∗′
t x

∗
t

. (51)

First, we consider α̂L,l1. The probability limit of ̂l1 is given in the following Lemma.

Lemma 6. Let Assumptions 1–3 hold. Then, as both N and T tend to infinity with
T/N → c, (0 ≤ c ≤ 2), we have

̂l1
p−→ c

2
.

20This interpretation was suggested by a referee.
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The following theorem establishes the consistency and asymptotic normality of α̂L,l1.

Theorem 6. Let Assumptions 1–3 hold. Then as both N and T tend to infinity, provided
T/N → c (0 ≤ c ≤ 2), we have

α̂L,l1
p−→ α, (52)√

NT∗(α̂L,l1 − α−BL,l1)
d−→N (0, 1 − α2), (53)

where

BL,l1 =
1√
NT∗

μG,l1 − T∗
2N μwg

RG,l1
T − T∗

2NR
wg
T

.

Remark 14. In the case of δ = 1, since RG,l1
T is bounded even when λ → ∞ and Rwg

T

does not depend on λ, BL,l1
T is bounded as the GMM estimator α̂G,l1. Using Lemmas 1(d)

and 5(a), we have√
NT∗

[
α̂L,l1 −

(
α− 1

2N − T∗
(1 + α)

)]
d−→N (0, 1 − α2). (54)

This is the result obtained by Alvarez and Arellano (2003).

Remark 15. In the case of δ �= 1, since both RG,l1
T and Rwg

T approach infinity as λ→ ∞,
BL,l1 tends to zero as λ → ∞. This implies that, as in the case of the GMM and WG
estimators, a large degree of heterogeneity makes the LIML estimators to have a small
bias when initial conditions are nonstationary.

Next, we consider α̂L,l2, α̂L,d2, and α̂L,b2.

Lemma 7. Let Assumptions 1–3 hold. Then, as both N and T tend to infinity,

̂2
p−→ 0,

where ̂2 denotes ̂l2, ̂d2, and ̂b2.

Theorem 7. Let Assumptions 1–3 hold. Then, when both N and T are large, α̂L,l2,
α̂L,d2, and α̂L,b2 are asymptotically equivalent to α̂G,l2, α̂G,d2, and α̂G,b2, respectively.

Remark 16. We find that the difference in the asymptotic distribution between the
GMM and LIML estimators exists only when all the instruments are used. If we use
a smaller number of instruments, for example, α̂G,l2 and α̂L,l2, the GMM and LIML
estimators have the same asymptotic distribution as in the large N and fixed T case.

6 Numerical studies

6.1 Monte Carlo studies with stationary initial conditions

In this subsection, we conduct Monte Carlo experiments to examine the performance of
the estimators with stationary initial conditions. We consider the following AR(1) model:

yi,t = αyi,t−1 + ηi + vit (i = 1, ...,N ; t = 2, ..., T + 1), (55)
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where ηi ∼ iidN (0, σ2
η), yi,0 ∼ iidN (ηi/(1 − α), σ2

v/(1 − α2)), and vit ∼ iidN (0, σ2
v ).

We consider (T,N) = (10,50), (10,100), (10,500), (15,50), (15,100), (15,300), (25,50),
(25,100), (50,50), α = 0.5,0.8,0.9, and σ2

η = 0.2,1, 10. σ2
v is set to be 1. The number of

replications is 5,000 for all cases.
For each estimator, we compute the median, the interquartile range (IQR), the median

absolute error (MAE),21 and the size of the Wald test for H0 : α = αo with a 5% level of
significance.22

Median. Table 1 reports the simulation results for the median of the estimators dis-
cussed in the previous sections. Among the GMM estimators, α̂G,b2 has the smallest bias
in almost all cases except when σ2

η = 0.2 and T is less than 15. Although the biases of
α̂G,b2 in the near unit root case, i.e., α = 0.9, are somewhat large in small samples, for
example, (T,N) = (10,100), α̂G,b2 performs quite well when N is as large as 500 or when
T is larger than 25. Further, we find that α̂G,l1 and α̂G,l2 are affected by the degree of
heterogeneity, while α̂G,d2 and α̂G,b2 are not. For example, when α = 0.9, T = 15, and
N = 100, the medians of α̂G,l1 and α̂G,l2 are 0.790 and 0.867 in the case of σ2

η = 0.2 and
0.742 and 0.675 in the case of σ2

η = 10. This demonstrates that α̂G,l2 is more seriously
affected than α̂G,l1 by large heterogeneity. It is also worth noting that when σ2

η = 10,
α̂G,l2 has a larger bias than α̂G,l1 despite the fact that the former uses fewer instruments
than the latter.

With regard to the bias-corrected WG estimator, we find that α̂hk works well in the
near unit root case when T is as large as 25. As for other features, we find that the
bias of α̂hk is not affected by the degree of heterogeneity and the cross-sectional sample
size N . The latter feature is particularly important when we compare α̂hk with the GMM
estimators. For instance, when α = 0.9, the medians of α̂G,b2 and α̂hk are 0.734 and 0.810,
respectively, in the case of T = 10 and N = 50, but 0.872 and 0.812 when T = 10 and
N = 500. This implies that α̂G,b2 is preferable to α̂hk especially when N is large. Further,
note that this result is consistent with the theoretical result of α̂G,l1 being consistent when
N is large regardless of T , whereas α̂wg can never be consistent unless T is large.

As for the LIML estimators, similar comments as those regarding the GMM estimators
apply. α̂L,b2 performs best in many cases, particularly when σ2

η is larger than one. Further,
we find that α̂L,l1 and α̂L,l2 are negatively affected by the degree of heterogeneity, and the
magnitude of the effects is more serious than in the case of the GMM estimators. Even
with a large sample, say, T = 50 and N = 50, when α = 0.9 and σ2

η = 10, α̂L,l1 and α̂L,l2

have quite large biases.
Among all the estimators, α̂L,b2 has the smallest bias for a wide range of sample sizes,

although the difference between α̂G,b2 and α̂L,b2 is quite small when N is as large as 300

21We use these robust statistics since the LIML estimators we compute are suspected to have no moments.
22The standard errors are calculated under large N and fixed T asymptotics, i.e., se(α̂) =

√
σ̂2

v(x∗′Mx∗)−1 for
the GMM and LIML estimators and se(α̂) =

√
σ̂2

v(x∗′x∗)−1 for the (bias-corrected) WG estimators. Although
the standard error of the bias-corrected WG estimators cannot be estimated consistently under large N and
fixed T asymptotics, it is expected that it will work well if the bias-correction works well.
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or T is as large as 25. This result is quite different from the cross-sectional case where the
GMM estimator has a much larger bias than the LIML estimators (see, e.g. Anderson,
Kunitomo, and Matsushita, 2005).

Interquartile range. Table 2 shows the simulation results for the interquartile range
of the estimators. Among the GMM estimators, the variability of α̂G,l1 is the smallest
in all cases. Although both α̂G.l1 and α̂G,b2 are asymptotically efficient, they differ in
a finite sample, and this difference becomes smaller as N or T becomes large. We also
find that the effect of a large degree of heterogeneity is serious for α̂G,l2. As σ2

η gets
larger, α̂G,l2 becomes more dispersed. If we compare α̂G,d2 and α̂G,b2, we observe that
the former is more dispersed than the latter; this result is consistent with the theoretical
results. For the bias-corrected WG estimator, the IQR is quite small in all cases, and as
N or T becomes large, the IQR becomes small. With regard to the LIML estimators, we
observe that they have quite large dispersion, particularly when α is large, for example,
α = 0.8,0.9. Moreover, we find that the IQRs of the LIML estimators are larger than
those of the GMM estimators in all cases. In particular, α̂L,l1 and α̂L,l2 are greatly affected
by a large degree of heterogeneity. In addition, we find that the LIML estimators have
quite large dispersion when N is as small as 50.

Median absolute error. The results for the median absolute error of the estimators
are summarized in Table 3. Among the GMM estimators, we observe that the MAE of
α̂G,b2 is the smallest, except for some cases of σ2

η = 0.2,1. Particularly, in the range of
T ≥ 15, improvements of α̂G,b2 compared to α̂G,l1 are significant, and the performance
of α̂G,b2 is the best in almost all the cases when σ2

η = 1, 10. As for the bias-corrected
WG estimator, its MAE is not affected by the degree of heterogeneity and is smaller than
that of α̂G,b2, except for the case of large N . With regard to the LIML estimators, α̂L,b2

performs well when σ2
η = 10, although α̂L,l1 and α̂L,l2 may be preferable in the case of

σ2
η = 0.2. We also find that in all cases, the MAEs of the LIML estimators are larger

than those of the GMM estimators. Hence, in terms of the MAE, α̂G,b2 is preferable to
α̂L,b2. Although α̂hk performs quite well, this estimator is not recommended since it is
not robust to nonstationary initial conditions, as will be discussed in the next subsection.

Size. The results of the empirical size of the Wald test are given in Table 4. Among the
GMM estimators, we find that the size distortion of α̂G,l1 is substantial, particularly when
α = 0.9. However, the empirical sizes of the GMM estimators with a smaller number of
instruments, α̂G,l2, α̂G,d2, and α̂G,b2 are close to the nominal size, with a few exceptions
in the case of small samples, for instance, when T = 10 and N = 50. With regard to the
bias-corrected WG estimators, the size distortion is quite large in many cases. For the
LIML estimators, we observe that the size distortion of α̂L,l1 is substantial when α = 0.9;
α̂L,l2 is also severely oversized, particularly when σ2

η/σ
2
v is large. For α̂L,b2, although its

empirical size is closer to the nominal size than in the case of other LIML estimators, it
is not very close to the size of the GMM estimator α̂G,b2.
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6.2 Numerical studies with nonstationary initial conditions

The theoretical analysis showed that large heterogeneity makes the GMM, WG, and LIML
estimators to have small bias if initial conditions are nonstationary. In this subsection,
we confirm this theoretical prediction numerically for some value of δ and λ.

We computed the median and the interquartile range of each estimator with (T̄ ,N) =
(10,200), (15,100) where T̄ = T + 1 for the case of α = 0.9. As for δ, we use δ =
(1 − α)/(1 − ᾱ) with ᾱ from 0.800 to 0.995 in steps of 0.0025.23 Note that ᾱ = 0.9
corresponds to the stationary case. (1 − α)2λ = σ2

η/σ
2
v is set to be 0.2,0.5,1, 3, 10. The

number of replications is 2, 500 for each ᾱ.

Median. Figures 1 to 20 depict the simulation values of the medians of the GMM, (bias-
corrected) WG, and LIML estimators. Comparing the cases of T̄ = 10, 15, we find that
the shapes of the graphs for each of the estimators are very similar, but their magnitudes
(as indicated by the different scales of the vertical axes) differ. Thus, in what follows we
consider each estimator in turn. We begin with α̂G,l1 and α̂G,l2. What is common to both
estimators is that the bias becomes very small as ᾱ approaches one. In particular, we
find that for the range of ᾱ > 0.9, i.e., δ > 1, the biases are smaller than the case where
ᾱ = 0.9, i.e., δ = 1. This is consistent with the theoretical result that the instruments
become strong when δ > 1 as discussed in Remark 5. We also find that α̂G,l2 is more
sensitive to the degree of heterogeneity than α̂l1. For example, in the case of T̄ = 15
and σ2

η = 10, the simulation value of α̂G,l1 changes from 0.742 to 0.870 when ᾱ moves
from 0.9 to 0.91, while that of α̂G,l2 changes from 0.675 to 0.895. This illustrates the
sensitivity of α̂G,l2 to the degree of heterogeneity. With regard to α̂G,d2 and α̂G,b2, we find
that the shape of the graphs is different from that of α̂G,l1 and α̂G,l2. While the graphs
for α̂G,l1 and α̂G,l2 are “U” or “V” shaped, those for α̂G,d2 and α̂G,b2 are “W” shaped.
In both cases, although the magnitude of the local maximum bias is almost the same for
any value of σ2

η/σ
2
v , ᾱ that takes the local maximum bias approaches ᾱ = 0.9 as σ2

η/σ
2
v

becomes larger. We also find that when T̄ = 15 and σ2
η/σ

2
v = 10, α̂G,d2 and α̂G,l2 are

almost unbiased when ᾱ ≤ 0.87 and ᾱ ≥ 0.92.
We proceed to consider α̂wg. We find that when the degree of heterogeneity is small,

i.e., for instance, σ2
η = 0.2, the estimate of α̂wg is nearly flat around ᾱ = 0.9. However,

as the degree of heterogeneity gets larger, the bias of α̂wg becomes small. Therefore, it
follows that large heterogeneity makes the WG estimator to have small bias. However,
this feature exacerbates the result of α̂hk. Since α̂hk corrects for the negative bias by
adding 1/T as shown in (44), it becomes upwardly biased by construction when the initial
conditions are nonstationary and heterogeneity is large. This can be seen by observing
that the scale of the vertical axis in Figures 6 and 16 is different from the figures for other

23Note that yi0 can be written as

yi0 = δ

(
1

1 − α

)
ηi + wi0 =

1
1 − ᾱ

ηi + wi0,

where δ = (1 − α)/(1 − ᾱ).
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estimators.
With regard to the LIML estimators, the effect of the degree of heterogeneity is quite

large. In the case of α̂L,l1, as σ2
η/σ

2
v becomes small, the magnitude of the local maximum

bias becomes large, although α̂L,l1 is not very much affected at ᾱ = 0.9. On the other
hand, α̂L,l2, as mentioned above, has substantial bias when ᾱ = 0.9 and σ2

η/σ
2
v is large.

We also find that α̂L,l2 has quite a large local maximum bias. Although the movement
of α̂G,l2 and α̂L,l2 is similar, the magnitude of the bias is quite different. The shape of
the graphs for α̂L,d2 and α̂L,b2 is quite similar to that of the graphs for α̂G,d2 and α̂G,b2,
except that the former has a smaller bias at ᾱ = 0.9 than the latter.

Interquartile range. Figures 21 to 40 depict the simulation values for the IQR of
the GMM, (bias-corrected) WG, and LIML estimators. As in the case of the median, the
IQR of α̂G,l1 and α̂G,l2 becomes small as the degree of heterogeneity becomes large under
nonstationary initial conditions. We also find that although α̂G,l2 is quite dispersed when
σ2

η/σ
2
v = 10 and ᾱ = 0.9, its variation becomes quite small as ᾱ moves away from 0.9,

particularly as ᾱ approaches one. For example, in the case of T̄ = 15 and σ2
η/σ

2
v = 10,

the IQR of α̂G,l1 decreases from 0.103 to 0.005 when ᾱ moves from 0.9 to 0.95 and that
of α̂G,l2 falls from 0.305 to 0.005. The shape of of the graphs for α̂G,d2 and α̂G,b2 is quite
similar although α̂G,b2 has a smaller variation than α̂G,d2 at ᾱ = 0.9.

For the (bias-corrected) WG estimators, we find that they have the largest IQR around
ᾱ = 0.9, and as ᾱ moves away from 0.9, the IQR becomes quite small. Moreover, the IQRs
of α̂wg and α̂hk are much smaller than those of the GMM estimators (note the different
scale of the vertical axis in the graphs for these estimators).

With regard to the LIML estimators, note that the scale of the vertical axis in the
graph is much larger than those of the GMM and (bias-corrected) WG estimators. We
find that the IQR of α̂L,l1 becomes substantially large when ᾱ = 0.8 and σ2

η/σ
2
v = 0.2. In

the case of α̂L,l2, the sensitivity of the IQR to large heterogeneity is noteworthy. If T̄ = 15
and σ2

η/σ
2
v = 10, the IQR of α̂L,l2 with ᾱ = 0.9 is 1.907, while that with ᾱ = 0.91 is 0.043.

The shapes of α̂L,d2 and α̂L,b2 are quite similar to those of α̂G,d2 and α̂G,b2, although the
scale is quite different.

7 Conclusion

In this paper, we considered the asymptotic properties of GMM estimators with various
kinds of instruments in a dynamic panel data model with possibly nonstationary initial
conditions. We showed that the GMM estimators with instruments in levels perform
poorly under stationary initial conditions and that they perform well under nonstationary
initial conditions if the degree of heterogeneity is large. We demonstrated that this result
comes from the fact that nonstationary initial conditions provide an additional correlation
between the lagged dependent variable and the instruments, and found that, as the degree
of heterogeneity gets larger, the instruments become strong.
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For the purpose of comparison, we also derived the asymptotic properties of WG
and LIML estimators. We showed that under stationary initial conditions, the perfor-
mance of the WG estimator is not affected by the degree of heterogeneity, while, under
nonstationary initial conditions, the bias of the WG estimator becomes small if the de-
gree of heterogeneity is large. For the LIML estimators, we found that the results are
similar to those of the GMM estimators. We conducted Monte Carlo simulations to as-
sess the estimators. The simulation results indicate that the LIML estimator with the
BOD-transformed instruments has smaller bias than the GMM estimator, although the
difference becomes small as the sample size becomes larger. However, in terms of the
median absolute error, the GMM estimator outperforms the LIML estimator in almost
all cases.

Finally, we note some possible extensions. First, although the model considered in this
paper is limited to a stable AR(1) panel model, for practical application, it is important to
extend the analysis to models with additional regressors and/or unobserved heterogeneous
time trends, or unit root models. In the case of the former, however, it is likely that the
points made in Remark 5 will apply. In the case of the latter, it is well known from the
literature on pure time series models that initial conditions affect the performance of unit
root tests (see, e.g. Elliott and Müller, 2003; Müller and Elliott, 2006). However, to the
best of our knowledge, there are no studies that investigate the effect of initial conditions
on the performance of panel unit root tests. These extensions are particularly important
in practice. Second, it would be interesting to investigate the properties of inconsistent
estimators. Although Arellano (2003) discusses an inconsistent IV estimator of models
in levels, it would be interesting to extend it to the level and system GMM estimators
which are known to be inconsistent when initial conditions are nonstationary. In terms of
practical application, it would be particularly important to investigate the power of the
over-identification test. These topics are left for future research.
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A Mathematical Proofs

A.1 The GMM estimator

Throughout the appendix, let us denote t0 = 1 for the case of Mt = M l1
t ,M

l2
t , and t0 = 2

for the case of Mt = Md2
t ,M b2

t .
We collect some results which are useful to prove the main results.

Lemma A1. Let a, b, c, d be constants satisfying a > 0, and a + bρt
1 > 0 for all t. We

also assume |ρ1|, |ρ2| < 1. Then as T → ∞,

S =
1
T∗

T∗∑
t=t0

c+ dρt
2

a+ bρt
1

→ c

a
. (56)

Proof: Since 0 < 1 + (b/a)ρt
1 for t = t0, ..., T∗, it follows that

S =
c

a

1
T∗

T∗∑
t=t0

1 + d
cρ

t
2

1 + b
aρ

t
1

=
c

a

1
T∗

T∗∑
t=t0

[
1 −

b
aρ

t
1 − d

cρ
t
2

1 + b
aρ

t
1

]

=
c

a

[
1 − 1

T∗

T∗∑
t=t0

b
aρ

t
1 − d

cρ
t
2

1 + b
aρ

t
1

]
=
c

a

[
1 −O

(
1
T

)]
→ c

a
.

Lemma A2. Let Assumption 1-3 hold. Then, we have

(a) E(y2
i,t−1) = σ2

v

[
1

1 − α2
+ λ

[
1 − (1 − δ)αt−1

]2]
,

(b) E(μiyi,t−1) = σ2
μ

[
1 − (1 − δ)αt−1

]
,

(c) E(wi,t−1yi,t−1) =
σ2

v

1 − α2
,

(d) E(Δy2
i,t−1) = σ2

v

[
2

1 + α
+ λ(1 − δ)2(1 − α)2α2(t−2)

]
,

(e) E(yi,t−1Δyi,t−1) = σ2
v

[
1

1 + α
+ λ(1 − δ)(1 − α)

[
1 − (1 − δ)αt−1

]
αt−2

]
,

(f) E(wi,t−1Δyi,t−1) =
σ2

v

1 + α
,

(g) E(μiΔyi,t−1) = σ2
μ(1 − δ)(1 − α)αt−2,

(h) E[(yb
i,t−1)

2] = σ2
v

[
1

1 − α2

(
1 − 2αφt−1

t− 1
+

1
(t− 1)2

{
(t− 1)(1 + α)

1 − α
− 2α(1 − αt−1)

(1 − α)2

})
+λ(1 − δ)2

(
αt−1 − φt−1

t− 1

)2
]
,

(i) E(yi,t−1y
b
i,t−1) = σ2

v

[
1

1 − α2

(
1 − αφt−1

t− 1

)
− λ(1 − δ)

[
1 − (1 − δ)αt−1

](
αt−1 − φt−1

t− 1

)]
,

(j) E(wi,t−1y
b
i,t−1) =

σ2
v

1 − α2

(
1 − αφt−1

t− 1

)
,
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(k) E(μiy
b
i,t−1) = −σ2

μ(1 − δ)
(
αt−1 − φt−1

t− 1

)
.

Proof: Using

yi,t−1 =
[
1 − (1 − δ)αt−1

]
μi + wi,t−1,

Δyi,t−1 = (1 − δ)(1 − α)αt−2μi + wi,t−1 − wi,t−2,

yb
i,t−1 =

[
−(1 − δ)

(
αt−1 − φt−1

t− 1

)
μi +

(
wi,t−1 − wi,t−2 + · · · +wi,0

t− 1

)]
,

and

E

(
wi,t−1 − wi,t−2 + · · · +wi,0

t− 1

)2

=
σ2

v

1 − α2

[
1 − 2αφt−1

t− 1
+

1
(t− 1)2

{
(t− 1)(1 + α)

1 − α
− 2α(1 − αt−1)

(1 − α)2

}]
,

it is straightforward to prove.
Lemma A3. Let κ3 and κ4 denote the third and fourth-order cumulants of vit. Also let
dt and ds be (N × 1) vectors containing the diagonal elements of Mt and Ms, respectively,
so that tr(Mt) = d′tιt = 1, tr(Ms) = d′sιt = 1, and d′tds ≤ 1. Then under Assumption 1,
for l ≥ r ≥ t, p ≥ q ≥ s, and t ≥ s, we have

cov(v′lMtvr, v
′
pMsvq) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2σ4

vtr(MtMs) + κ4E(d′tds) ≤ (2σ4
v + κ4) l = r = p = q

κ3E(d′tMsvq) l = r = p �= q < t

σ4
vtr(MtMs) ≤ σ4

v l = p �= r = q

0 otherwise,

|E(d′tMsvq)| ≤ σv

Proof Using the similar arguments to Alvarez and Arellano (2003), it is straightforward
to show.
Lemma A4. Let Assumptions 1, 2, 3 hold. Then as both N and T tend to infinity,

(a)
1

NT∗

T−1∑
t=1

w′
t−1M

l2
t wt−1

p−−−−−−−→
N, T → ∞

ρl2

(
σ2

v

1 − α2

)
,

(b)
1

NT∗

T−1∑
t=2

w′
t−1M

d2
t wt−1

p−−−−−−−→
N, T → ∞

ρd2

(
σ2

v

1 − α2

)
.

As T tends to infinity, regardless of whether N is fixed or tends to infinity,

(c)
1

NT∗

T−1∑
t=1

w′
t−1M

l1
t wt−1

p−−−−−→
T → ∞

(
σ2

v

1 − α2

)
,

(d)
1

NT∗

T−1∑
t=2

w′
t−1M

b2
t wt−1

p−−−−−→
T → ∞

(
σ2

v

1 − α2

)
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where

ρl2 =
[
1 + λ(1 − α2)

]−1
,

ρd2 =
(

1 − α

2

)
.

Proof: (a), (b): They are obtained using w′
t−1Zt/N = E(wi,t−1zit) + Op(1/

√
N),

Z ′
tZt/N = E(z2

it) +Op(1/
√
N), and Lemma A1, and A2 as follows:

1
NT∗

T−1∑
t=t0

w′
t−1Mtwt−1 =

1
T∗

T−1∑
t=t0

E(wi,t−1zit)[E(z2
it)]

−1E(zitwi,t−1) +Op

(
1√
N

)

→ ρ2

(
σ2

v

1 − α2

)
where zit denotes zl2

it or zd2
it , and ρ2 denotes ρl2 or ρd2.

(c) As in Alvarez and Arellano (2003), let et be the (N × 1) vector of errors of the
population linear projection of μ∗t on Z l1

t as follows:

et = μ∗t − Z l1
t γ

l1
t (57)

where μ∗t = (μ∗1t, ..., μ
∗
Nt)

′ and γl1
t = [E(zl1

it z
l1′
it )]−1E(zl1

it μ
∗
it). We derive the explicit ex-

pression of γt. First, note that zl1
it can be expressed as

zl1
it = [ιt − (1 − δ)ψα]μi + ψw,i = btμi + ψw,i (58)

where ιt is a (t× 1) vector of ones, ψα = (1, α, ..., αt−1)′, and ψw,i = (wi,0, ..., wi,t−1)′. Let
Vt denote a (t× t) matrix whose (j, k) element is α|j−k|/(1 − α2). Then, we have

E(zl1
it z

l1′
it ) = σ2

μbtb
′
t + σ2

vVt. (59)

Using the formula (A+ bb′)−1 = A−1 −A−1bb′A−1/(1 + b′A−1b), it follows that[
E(zl1

it z
l1′
it )
]−1

=
[
σ2

vVt + σ2
μbtb

′
t

]−1 = σ−2
v

[
Vt + (

√
λbt)(

√
λbt)′

]−1

= σ−2
v

[
V −1

t − λ

1 + λb′tV
−1
t bt

V −1
t btb

′
tV

−1
t

]
.

Next, we have

E(zl1
it μ

∗
it) = σ2

μ [ιt − (1 − δ)ψα]
[
1 − (1 − δ)αt

]
= σ2

μbt
[
1 − (1 − δ)αt

]
.

Then, we have

γt =
λ

1 + λb′tV
−1
t bt

V −1
t bt[1 − (1 − δ)αt]. (60)

Using the expression of γt, the i-th component of et is given by

eit = μ∗it − zl1′
it γt =

[
μi − λδ(1 − α2)wi0 − λ(1 − α)(vi1 + · · · + vi,t−1)

] [
1 − (1 − δ)αt

]
1 + λ{(1 − α2) + (t− 1)(1 − α)2 − (1 − δ2)(1 − α2)}
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where we use the results that b′tV
−1
t bt = (1 − α2) + (t − 1)(1 − α)2 − (1 − δ2)(1 − α2),

and ψ′
wiV

−1
t bt = δ(1−α2)wi0 + (1−α)(vi1 + · · ·+ vi,t−1). Since eit is composed of (t+ 1)

independent variables, its variance is given by

E(e2it) =

[
σ2

μ − λ2δ2σ2
v(1 − α2) + (1 − α)2(t− 1)σ2

v

] [
1 − (1 − δ)αt

]2
[1 + λ{(1 − α2) + (t− 1)(1 − α)2 − (1 − δ2)(1 − α2)}]2

= O

(
1
t

)
.

Now we consider the decomposition:

w′
t−1M

l1
t wt−1 = w′

t−1wt−1 − w′
t−1(IN −M l1

t )wt−1

= w′
t−1wt−1 − e′t(IN −M l1

t )et

where the second equality comes from the fact that wt−1 = yt−1 − Z l1
t γ

l1
t − et and (IN −

M l1
t )(yt−1 − Z l1

t ) = 0. Hence we have

1
NT∗

T−1∑
t=1

E(w′
t−1M

l1
t wt−1) = E(w2

i,t−1) −
1

NT∗

T−1∑
t=1

E(e′t(IN −M l1
t )et).

Since the maximum eigenvalue of (IN −M l1
t ) is equal to 1,

1
NT∗

T−1∑
t=1

E(e′t(IN −M l1
t )et) ≤ 1

NT∗

T−1∑
t=1

E(e′tet) =
1
T∗

T−1∑
t=1

E(e2i,t) =
1
T∗
O(log T ) → 0.

Hence, as T → ∞,

1
NT∗

T∑
t=1

E(w′
t−1M

l1
t wt−1) → E(w2

i,t−1) =
σ2

v

1 − α2
.

With regards to the proofs that the variance of (NT∗)−1
∑T−1

t=1 w
′
t−1wt−1 and (NT∗)−1

∑T−1
t=1 e

′
tet

tend to zero, see Alvarez and Arellano (2003).
(d) The flow of the proof is the same as that of the proof of (c). Let εt denote the

(N × 1) vector of errors of the population linear projection of wt−1 on Zb2
t :

wt−1 = Zb2
t γ

b2
t + εt

where γb2
t = E(zb2

it wi,t−1)/E(zb2
it )2 = E(yb

i,t−1wi,t−1)/[E(yb
i,t−1)

2]. Using Lemma A2, the
i-th component of εt can be expressed as

εit = wi,t−1 − δyb
i,t−1 =

C

D

where

C =
[λ12wi,t−1 + λ3(wi,t−2 + · · · + wi0)]

t− 1
+ λ4

(
αt−1 − φt−1

t− 1

)2

wi,t−1 + λ5

(
αt−1 − φt−1

t− 1

)
μi

= C1 + C2 +C3,

D = E[(yb
i,t−1)

2] = O(1),

λ1 = −σ
2
vαφt−1

1 − α2
,
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λ2 =
1

t− 1

(
σ2

v

1 − α2

){
(t− 1)(1 + α)

1 − α
− 2α(1 − αt−1)

(1 − α)2

}
,

λ3 =
(

σ2
v

1 − α2

)(
1 − αφt−1

t− 1

)
,

λ4 = (1 − δ)2σ2
μ,

λ5 = (1 − δ)
(

σ2
v

1 − α2

)(
1 − αφt−1

t− 1

)
,

λ12 = λ1 + λ2.

We derive the order of E(ε2it). Since D = O(1), we consider only C. Since μi and
wi,t−1 are independent, we have

var(C) = var(C1) + var(C2) + var(C3) + 2cov(C1, C2) + 2cov(C2, C3) + 2cov(C1, C3)

= var(C1) + var(C2) + var(C3) + 2cov(C1, C2)

= O

(
1
t

)
+ λ2

4

[
α2(t−1) +O

(
1
t

)](
σ2

v

1 − α2

)
+ λ2

5

[
α2(t−1) +O

(
1
t

)]
σ2

μ +O

(
1
t

)
= O

(
1
t

)
+
(
λ2

4σ
2
v

1 − α2
+ λ2

5σ
2
μ

)
α2(t−1)

= O

(
1
t

)
+ λ6α

2(t−1).

Hence,

E(ε2it) =
var(C)
D2

= O

(
1
t

)
+
λ6

D2
α2(t−1).

Given the existence of the fourth order moments of εit, we also have

E(ε4it) = O

(
1
t2

)
+O

(
1
t

)
α2(t−1) +

λ2
6

D4
α4(t−1).

As in the proof of (c), we consider the decomposition:

w′
t−1M

b2
t wt−1 = w′

t−1wt−1 − w′
t−1(IN −M b2

t )wt−1

= w′
t−1wt−1 − ε′t(IN −M b2

t )εt.

Since the maximum eigenvalue of (IN −M b2
t ) is equal to 1,

1
NT∗

T−1∑
t=2

E(ε′t(IN −M b2
t )εt) ≤ 1

NT∗

T−1∑
t=2

E(ε′tεt) =
1
T∗

T−1∑
t=2

E(ε2it)

=
1
T∗
O(log T ) +

λ6

T∗D2

α2(1 − α2(T−2))
1 − α2

→ 0.

Hence, as T → ∞,

1
NT∗

T∑
t=2

E(w′
t−1M

b2
t wt−1) → E(w2

i,t−1) =
σ2

v

1 − α2
.

Finally, the variance of (NT∗)−1
∑T−1

t=2 ε
′
tεt is shown to tend to zero as follows:

var

(
1

NT∗

T−1∑
t=2

ε′tεt

)
=

1
N
var

(
1
T∗

T−1∑
t=2

ε2it

)
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=
1
N

[
1
T 2∗

∑
t

var(ε2it) +
2
T 2∗

∑
s

∑
t>s

cov(ε2it, ε
2
is)

]

≤ 1
N

[
1
T 2∗

∑
t

{
O

(
1
t2

)
+O

(
1
t

)
α2(t−1) +

λ2
6

D4
α4(t−1)

}
+

2
T 2∗

∑
t

{
O

(
1
t

)
+O

(
1√
t

)
α(t−1) +

λ6

D2
α2(t−1)

}
×
∑

s

{
O

(
1
s

)
+O

(
1√
s

)
α(s−1) +

λ6

D2
α2(s−1)

}
→ 0.

Proof of Lemma 1(a), 2(a), 3(a), 4(a)

We shall use the decomposition as follows:

x∗it = ψt

[
wi,t−1 − (1 − δ)αt−1μi

]− ctṽitT (61)

= ψt(yi,t−1 − μi) − ctṽitT (62)

where

ψt = ct

(
1 − αφT−t

T − t

)
, (63)

ṽitT =
φT−tvit + · · · + φ1vi,T−1

T − t
, (64)

φj =
1 − αj

1 − α
= 1 + α+ · · · + αj−1. (65)

Then, following Alvarez and Arellano (2003), we have

E(x∗
′
Mv∗) = −

T−1∑
t=t0

E(ctṽ′tTMtv
∗
t ) (66)

= −
T−1∑
t=t0

σ2
vtr(Mt)
1 − α

(
φT−t

T − t
− φT−t+1

T − t+ 1

)
. (67)

Proof of Lemma 1(a) See Alvarez and Arellano (2003).
Proof of Lemma 2(a), 3(a), 4(a) Since tr(Mt) = 1, the results follow from a simple
calculation.

Proof of Lemma 1(b), 2(b), 3(b), 4(b),

It is straightforward to show from Lemma A2 and a simple manipulation.

Proof of Lemma 1(c), 2(c), 3(c), 4(c),

Using v∗t = (vt − v̄tT )/ct, we have the following decomposition:

x∗′Mv∗√
NT∗

=
1√
NT∗

T−1∑
t=t0

w′
t−1Mtvt − Υ11NT − Υ12NT − Υ13NT + Υ14NT + Υ15NT
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−(Υ21NT − Υ22NT )

= Υ∗
11NT − Υ12NT − Υ13NT + Υ14NT + Υ15NT − (Υ21NT − Υ22NT )

where

Υ11NT =
1√
NT∗

T−1∑
t=t0

w′
t−1Mtv̄tT , (68)

Υ∗
11NT =

1√
NT∗

T−1∑
t=t0

ctw
′
t−1Mtv

∗
t , (69)

Υ12NT =
1√
NT∗

T−1∑
t=t0

ctαφT−t

T − t
w′

t−1Mtv
∗
t , (70)

Υ13NT =
(1 − δ)√
NT∗

T−1∑
t=t0

αt−1μ′Mtvt, (71)

Υ14NT =
(1 − δ)√
NT∗

T−1∑
t=t0

αt−1μ′Mtv̄tT , (72)

Υ15NT =
(1 − δ)√
NT∗

T−1∑
t=t0

ctαφT−t

T − t
αt−1μ′Mtv̄

∗
t , (73)

Υ21NT =
1√
NT∗

T−1∑
t=t0

ṽ′tTMtvt, (74)

Υ22NT =
1√
NT∗

T−1∑
t=t0

ṽ′tTMtv̄tT , (75)

v̄tT =
vt + · · · + vT

T − t+ 1
. (76)

Proof of Lemma 1(b) For the case of Mt = M l1
t , Alvarez and Arellano (2003) showed

that the variance of the leading term converges to σ4
v/(1−α2), and those of Υ11NT , Υ12NT ,

Υ21NT , and Υ22NT tend to zero if (log T )2/N → 0. Hence, to complete the proof, we show
that the variances of Υ13NT , Υ14NT , and Υ15NT tend to zero. First, we consider Υ13NT :

var(Υ13NT ) =
(1 − δ)2

NT∗
var

(
T−1∑
t=1

αt−1μ′M l1
t vt

)
=

(1 − δ)2

NT∗

T−1∑
t=1

α2(t−1)var
(
μ′M l1

t vt

)
=

σ2
μ(1 − δ)2

NT∗

T−1∑
t=1

α2(t−1)E(v′tM
l1
t vt) =

σ2
vσ

2
μ(1 − δ)2

NT∗

T−1∑
t=1

α2(t−1)tr(M l1
t )

→ 0.

Next, the variance of Υ14NT can be decomposed into two parts as follows:

var(Υ14NT ) =
(1 − δ)2

NT∗
var

(
T−1∑
t=1

αt−1μ′M l1
t v̄tT

)

=
(1 − δ)2

NT∗

[
T−1∑
t=1

var
(
αt−1μ′M l1

t v̄tT

)
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+2
∑

s

∑
t>s

cov(αt−1μ′M l1
t v̄tT , α

s−1μ′M l1
s v̄sT )

]
.

For the first term, since t/(T − t+ 1) < T for t = 1, ..., T − 1, we have

var(αt−1μ′M l1
t v̄tT ) = α2(t−1)σ

2
vσ

2
μtr(M l1

t )
T − t+ 1

< Tα2(t−1)σ2
vσ

2
μ.

Then, it follows that

σ2
vσ

2
μ(1 − δ)2

NT∗

T−1∑
t=1

α2(t−1) t

T − t+ 1
<

σ2
vσ

2
μ(1 − δ)2

N

T−1∑
t=1

α2(t−1) = O

(
1
N

)
→ 0.

For the second term, since

|cov(αt−1μ′M l1
t v̄tT , α

s−1μ′M l1
s v̄sT )| ≤

√
var(αt−1μ′M l1

t v̄tT )
√
var(αs−1μ′M l1

s v̄sT )

≤ Tσ2
vσ

2
μα

t−1αs−1,

it follows that

(1 − δ)2

NT∗

∑
s

∑
t>s

|cov(αt−1μ′M l1
t v̄tT , α

s−1μ′M l1
s v̄sT )|

≤ σ2
vσ

2
μ(1 − δ)2

N

∑
s

∑
t>s

αt−1αs−1

≤ σ2
vσ

2
μ(1 − δ)2

N

∑
t

αt−1
∑

s

αs−1 = O

(
1
N

)
→ 0.

Thus, the variance of Υ14NT is shown to tend to zero. Finally, we consider Υ15NT . The
variance of Υ15NT is shown to tend to zero as follows:

var(Υ15NT ) =
(1 − δ)2

NT∗
var

(
T−1∑
t=1

ctαφT−t

T − t
αt−1μ′M l1

t v
∗
t

)

=
(1 − δ)2

NT∗

T−1∑
t=1

c2tα
2φ2

T−t

(T − t)2
α2(t−1)var

(
μ′M l1

t v
∗
t

)
<

(1 − δ)2

NT∗
α2

(1 − α)2

(
T−1∑
t=1

α2(t−1)

(T − t)2
var

(
μ′M l1

t v
∗
t

))

=
(1 − δ)2

NT∗

α2σ2
vσ

2
μ

(1 − α)2

(
T−1∑
t=1

tα2(t−1)

(T − t)2

)
→ 0.

To prove the result, we used the fact that Et(v∗t v∗
′

t ) = σ2
vIN , Et(v∗t v∗

′
s ) = 0 for t > s,

c2t < 1, and φ2
T−t < 1/(1 − α)2, where Et(·) denotes an expectation conditional on ηi and

{vi,t−j}∞j=1.
Proof of Lemma 2(b), 3(b), 4(b) First, we consider Υ∗

11NT . Its variance is given by

var(Υ∗
11NT ) =

1
NT∗

var

(
T−1∑
t=t0

ctw
′
t−1Mtv

∗
t

)
=

1
NT∗

T−1∑
t=t0

T−1∑
s=t0

ctcsE(w′
t−1Mtv

∗
t v

∗′
s Msws−1)

=
σ2

v

NT∗

T−1∑
t=t0

c2tE(w′
t−1Mtwt−1) +

2
NT

∑
s

∑
t>s

ctcsE(w′
t−1Mtv

∗
t v

∗′
s Msws−1)
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→ ρ2

(
σ4

v

1 − α2

)
where ρ2 denotes ρl2, ρd2, 1 for the case of Mt = M l2

t ,M
d2
t , and M b2

t , respectively. The
last convergence comes from Lemma A4, c2t = 1−O(1/(T −t)) and Et(v∗t v∗s) = 0 for t > s.

Next, the variance of Υ12NT is shown to tend to zero as follows:

var(Υ12NT ) =
1

NT∗
var

(
T−1∑
t=t0

ctαφT−t

T − t
w′

t−1Mtv
∗
t

)

=
σ2

v

NT∗

T−1∑
t=t0

α2φ2
T−t

(T − t)(T − t+ 1)
E(w′

t−1Mtwt−1)

≤ σ2
v

T∗

T−1∑
t=t0

α2φ2
T−t

(T − t)(T − t+ 1)
E(w2

i,t−1)

≤ constant

T∗

T−1∑
t=t0

1
(T − t)(T − t+ 1)

→ 0.

The variances of Υ13NT and Υ14NT are shown to tend to zero in similar way to the case
of M l1

t .
We then turn to consider var(Υ21NT ):

var(Υ21NT ) =
1

NT∗
var

[
T−1∑
t=t0

1
T − t

v′tMt(φT−tvt + · · · + φ1vT−1)

]
= a0NT + a1NT

where

a0NT =
1

NT∗

T−1∑
t=t0

φ2
T−tvar(v

′
tMtvt) + · · · + φ2

1var(v
′
tMtvT−1)

(T − t)2

=
1

NT∗

T−1∑
t=t0

φ2
T−t[2σ

4
vtr(MtMs) + κ4E(d′tds)] + (φ2

T−t−1 + · · · + φ2
1)tr(MtMs)σ4

v

(T − t)2

and

a1NT =
2

NT∗

T−2∑
t=t0

[
φ2

T−t−1cov(v
′
tMtvt+1, v

′
t+1Mt+1vt+1)

(T − t)(T − t− 1)

+ · · · + φ2
1cov(v

′
tMtvT−1, v

′
T−1MT−1vT−1)

(T − t)

]

=
2

NT∗

T−2∑
t=t0

[
φ2

T−t−1κ3E(d′t+1Mtvt)
(T − t)(T − t− 1)

+ · · · + φ2
1κ3E(d′T−1Mtvt)

(T − t)

]
.

Using Lemma A3 and the fact that φ2
j < 1/(1 − α)2 for all j,

a0NT ≤ 1
NT∗

T−1∑
t=t0

φ2
T−t[2σ

4
v + κ4] + (φ2

T−t−1 + · · · + φ2
1)σ

4
v

(T − t)2

≤ 1
(1 − α)2

1
NT∗

T−1∑
t=t0

[2σ4
v + κ4] + (T − t− 1)σ4

v

(T − t)2
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=
2σ4

v + κ4

(1 − α)2
1

NT∗

T−1∑
t=t0

1
(T − t)2

+
σ4

v

(1 − α)2
1

NT∗

T−1∑
t=t0

T − t− 1
(T − t)2

→ 0.

From the triangle inequality, Lemma A3, and the fact that |E(d′t+jMtvt)| ≤ σv,

|a1NT | ≤ 2|κ3|σv

(1 − α)2
1

NT∗

T−2∑
t=t0

1
T − t

[
1

(T − t− 1)
+ · · · + 1

1

]

<
2|κ3|σv

(1 − α)2
1

NT∗

T−2∑
t=t0

1
T − t

[
T−1∑
s=1

1
s

]
= O

(
(log T )2

NT

)
→ 0.

Lastly, we consider the term Υ22NT . We decompose the variance of Υ22NT as follows:

var(Υ22NT ) =
1

NT∗
var

(
T−1∑
t=t0

v̄′tTMtṽtT

)
= b0NT + b1NT

where

b0NT =
1

NT∗

T−1∑
t=t0

var(v̄′tTMtṽtT )

and

b1NT =
2

NT∗

∑
s

∑
s>t

cov(v̄′tTMtṽtT , v̄
′
sTMsṽsT ).

From (A73) in Alvarez and Arellano (2003), we have

var(v̄′t,TMtṽt,T ) = O

(
1

(T − t)2

)
.

Hence, b0NT → 0. Next, with regard to the term b1NT , we have

|b1NT | ≤ 2
NT∗

∑
s

∑
s>t

|cov(v̄′t,TMtṽt,T , v̄
′
s,TMsṽs,T )|

≤ 2
NT∗

∑
s

∑
s>t

√
var(v̄′t,TMtṽt,T )

√
var(v̄′s,TMsṽs,T )

≤ 2
NT∗

∑
s

O

(
1

T − t

)∑
t

O

(
1

T − s

)
= O

(
(log T )2

NT

)
→ 0.

Proof of Lemma 1(d), 2(d), 3(d), 4(d),

We use the decomposition as follows:

x∗′Mx∗

NT∗
=

1
NT∗

T−1∑
t=1

ψ2
tw

′
t−1Mtwt−1 +

(1 − δ)2

NT∗

T−1∑
t=1

ψ2
t α

2(t−1)μ′Mtμ

−2(1 − δ)
NT∗

T−1∑
t=1

ψ2
t α

t−1μ′Mtwt−1

+
1

NT∗

T−1∑
t=1

c2t ṽ
′
tTMtṽtT − 2

NT∗

T−1∑
t=1

ctψtṽ
′
tTMt(yt−1 − μ).

Since the last four terms are easily shown to tend to zero, we consider only the first term.
With regards to the first term, using Lemma A4 and noting ψ2

t = 1 − O[1/(T − t)], the
results directly follow.
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Proof of Theorem 1

It is straightforward to show consistency from Lemma 1. Next, we show the asymptotic
normality of α̂G,l1. Alvarez and Arellano (2003) showed that

1√
NT∗

T−1∑
t=1

x∗
′

t M
l1
t v

∗
t − μG,l1 =

1√
NT∗

T−1∑
t=1

w′
t−1vt + op(1) d−→N

(
0,

σ4
v

1 − α2

)
.

Hence, by Cramer’s theorem, we have(
x∗′M l1x∗

NT∗

)−1(
x∗′M l1v∗√

NT∗
− μG,l1

)
=

√
NT∗

⎡⎣α̂G,l1 − α− μG,l1√
NT∗

(
x∗′M l1x∗

NT∗

)−1
⎤⎦

=
√
NT∗ [α̂G,l1 − α−BG,l1] + op(1)

d−→ N (0, 1 − α2)

where

BG,l1 =
1√
NT∗

μG,l1

RG,l1
T

.

Proof of Theorem 2, 3

Consistency directly follows from Lemma 2 and 3. Next, we show the asymptotic normal-
ity. Using w′

t−1Zt/N = E(wi,t−1zit) +Op(1/
√
N), and Z ′

tZt/N = E(z2
it) +Op(1/

√
N),

1√
NT∗

T−1∑
t=2

x∗
′

t M
l2
t v

∗
t − μG,l2 =

1√
NT∗

T−1∑
t=2

w′
t−1M

l2
t vt + op(1)

=
1√
NT∗

T−1∑
t=2

N∑
i=1

E(wi,t−1zit)
E(z2

it)
zitvit +Op

(
1√
N

)
d−→ N

(
0, ρl2

(
σ4

v

1 − α2

))
.

Hence, by Cramer’s theorem, we have(
x∗′M l2x∗

NT∗

)−1(
x∗′M l2v∗√

NT∗
− μG,l2

)
=

√
NT∗

⎡⎣α̂l2 − α− μG,l2√
NT∗

(
x∗′M l2x∗

NT∗

)−1
⎤⎦

=
√
NT∗ [α̂l2 − α−BG,l2] + op(1)

d−→ N
(
0, (1 − α2)ρ−1

l2

)
where

BG,l2 =
1√
NT∗

μG,l2

RG,l2
T

.

The proof of Theorem 3 can be done exactly in the same way as Theorem 2.
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Proof of Theorem 4

It is straightforward to show consistency from Lemma 4. Next, we show the asymptotic
normality of α̂G,b2. To begin with, since the variances of Υ11NT , Υ12NT , Υ13NT , Υ14NT ,
Υ21NT , and Υ22NT are shown to tend to zero, note that

1√
NT∗

T−1∑
t=2

x∗
′

t M
b2
t v∗t − μG,b2 =

1√
NT∗

T−1∑
t=2

w′
t−1M

b2
t vt + op(1)

=
1√
NT∗

T−1∑
t=2

w′
t−1vt − 1√

NT∗

T−1∑
t=2

w′
t−1(IN −M b2

t )vt + op(1).

(77)

The second term in (77) is shown to be op(1) using the same argument as Alvarez and
Arellano (2003). Therefore,

1√
NT∗

T−1∑
t=2

x∗
′

t M
b2
t v∗t − μG,b2 =

1√
NT∗

T−1∑
t=2

w′
t−1vt + op(1) d−→N

(
0,

σ4
v

(1 − α2)

)
.

Using Cramer’s theorem, we get the following result:(
x∗′M b2x∗

NT∗

)−1(
x∗′M b2v∗√

NT∗
− μG,b2

)
=

√
NT∗

⎡⎣α̂G,b2 − α− μG,b2√
NT∗

(
x∗′M b2x∗

NT∗

)−1
⎤⎦

=
√
NT∗ [α̂G,b2 − α−BG,b2] + op(1)

→d N (0, 1 − α2)

where

BG,b2 =
1√
NT∗

μG,b2

RG,b2
T

.

A.2 The WG estimator

Proof of Lemma 6 (a) ,

E

(
x∗′x∗

NT

)
= E

⎛⎝ 1
N

N∑
i=1

⎡⎣ 1
T

T∑
t=1

x2
it −

(
1
T

T∑
t=1

xit

)2
⎤⎦⎞⎠

=
1
T

T∑
t=1

E(x2
it) − E

(
1
T

T∑
t=1

xit

)2

.

With regards to the first term, we have

1
T

T∑
t=1

E(x2
it) =

σ2
v

1 − α2
+ σ2

μ

[
1 − 2(1 − δ)

T

1 − αT

1 − α
+

(1 − δ)2

T

1 − α2T

1 − α2

]
.

For the second term, we have

E

(
1
T

T∑
t=1

xit

)2

= E

(
1
T

T∑
t=1

μ∗i,t−1

)2

+ E

(
1
T

T∑
t=1

wi,t−1

)2
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=
[
1 − (1 − δ)

T

1 − αT

1 − α

]2

σ2
μ +

1
T

(
σ2

v

1 − α2

)[
1 + α

1 − α
− 1
T

2α(1 − αT )
(1 − α)2

]
.

Then the result follows. (b) See Alvarez and Arellano (2003). (c) We shall decompose as
follows:

x∗′v∗√
NT

=
1√
NT

N∑
i=1

T∑
t=1

wi,t−1vit +
1√
NT

N∑
i=1

T∑
t=1

μ∗i,t−1vit

−
√
T

N

N∑
i=1

μ̄∗i(−1)v̄i −
√
T

N

N∑
i=1

w̄i(−1)v̄i

= Ψ1 + Ψ2 − Ψ3 − Ψ4.

where μ̄∗i(−1) =
(∑T

t=1 μ
∗
i,t−1

)
/T , v̄i =

(∑T
t=1 vit

)
/T , and w̄i(−1) =

(∑T
t=1wi,t−1

)
/T .

Since ηi and vit are independent, we have

var

(
x∗′v∗√
NT

)
= var(Ψ1) + var(Ψ2) + var(Ψ3) + var(Ψ4) − 2cov(Ψ2,Ψ3) − 2cov(Ψ1,Ψ4)

where

var(Ψ1) = var

(
1√
T

T∑
t=1

wi,t−1vit

)
=

σ4
v

1 − α2
,

var(Ψ2) =
1
T

T∑
t=1

E(μ∗2i,t−1v
2
it) =

[
1 − 2(1 − δ)

T

1 − αT

1 − α
+

(1 − δ)2

T

1 − α2T

1 − α2

]
σ2

μσ
2
v ,

var(Ψ3) = Tvar(μ̄∗i(−1)v̄i) = TE(μ̄∗2i(−1))E(v̄2
i ) = σ2

vσ
2
μ

(
1 − (1 − δ)

T

1 − αT

1 − α

)2

,

var(Ψ4) = Tvar(v̄iw̄i(−1)) = O(T−1),

|cov(Ψ1,Ψ4)| ≤
√
var(Ψ1)

√
var(Ψ4) = O

(
1√
T

)
→ 0,

cov(Ψ2,Ψ3) = E

[(
T∑

t=1

μ∗i,t−1vit

)(
1
T

T∑
t=1

μ∗i,t−1

)(
1
T

T∑
t=1

vit

)]

= σ2
μσ

2
v

(
1 − (1 − δ)

T

1 − αT

1 − α

)2

.

Collecting these terms, the result follows.
Proof of Theorem 5 Let us define μwg as follows:

μwg =
1√
NT

E(x∗
′
v∗) = −

√
N

T

σ2
v

1 − α
+

√
N

T 3

σ2
v(1 − αT )
(1 − α)2

. (78)

Then using the similar arguments to Alvarez and Arellano (2003), it follows that

1√
NT

x∗
′
v∗ − μwg

d−→N

(
0,

σ4
v

1 − α2

)
. (79)
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Hence from Cramer’s theorem,(
x∗′x∗

NT

)−1 [
1√
NT

x∗
′
v∗ − μwg

]
d−→N (0, 1 − α2), (80)

or,
√
NT

(
α̂wg − α+ B̂wg

)
d−→N (0, 1 − α2) (81)

where B̂wg = (μwg/
√
NT )/(x∗′x∗/NT ). Since B̂wg = plimN→∞B̂wg+op(1) = E(x∗′v∗)/E(x∗′x∗)+

op(1), the result follows.

A.3 The LIML estimator

Proof of Lemma 6

From Lemma 1 and Alvarez and Arellano (2003, p.1149-1150), it is straightforward to
show.

Proof of Theorem 6

It is straightforward to show consistency from Lemma 6. Next, we show the asymptotic
normality of α̂L,l1. Alvarez and Arellano (2003) showed that

1√
NT∗

(
x∗

′
M l1v∗ − ̂l1x

∗′v∗
)
− (μG,l1 − ̂l1μwg)

=
(
1 − c

2

) 1√
NT∗

T−1∑
t=1

w′
t−1vt + op(1) d−→N

(
0,
(
1 − c

2

)2 σ4
v

1 − α2

)
.

Hence, using the similar arguments to Alvarez and Arellano (2003), we have(
x∗′M l1x∗ − ̂l1x

∗′x∗

NT∗

)−1(
x∗′M l1v∗ − ̂l1x

∗′x∗√
NT∗

− (μG,l1 − ̂l1μwg)

)

=
√
NT∗

⎡⎣α̂L,l1 − α− μG,l1 − ̂l1μwg√
NT∗

(
x∗′M l1x∗ − ̂l1x

∗′x∗

NT∗

)−1
⎤⎦

=
√
NT∗ [α̂L,l1 − α−BL,l1] + op(1)

d−→ N (0, 1 − α2)

where

BL,l1 =
1√
NT∗

μG,l1 − T∗
2N μwg

RG,l1
T − T∗

2NR
wg
T

.

Proof of Lemma 7

Using y∗t = αx∗t + v∗t and Lemma 2,3, and 4, we have

1
NT∗

T−1∑
t=t0

y∗
′

t Mty
∗
t =

α2

NT∗

T−1∑
t=t0

x∗
′

t Mtx
∗
t +

2α
NT∗

T−1∑
t=t0

x∗
′

t Mtv
∗
t +

1
NT∗

T−1∑
t=t0

v∗
′

t Mtv
∗
t
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=
α2

NT∗

T−1∑
t=t0

x∗
′

t Mtx
∗
t +Op

(
1√
NT

)
+Op

(
1
N

)
.

1
NT∗

T−1∑
t=t0

y∗
′

t Mtx
∗
t =

α

NT∗

T−1∑
t=t0

x∗
′

t Mtx
∗
t +

1
NT∗

T−1∑
t=t0

x∗
′

t Mtv
∗
t

=
α

NT∗

T−1∑
t=t0

x∗
′

t Mtx
∗
t +Op

(
1√
NT

)
.

Then, as both N and T go to infinity, it follows that

W ∗′MW

NT∗
=

(
1

NT∗
∑T−1

t=t0
y∗′t Mty

∗
t

1
NT∗

∑T−1
t=t0

y∗′t Mtx
∗
t

1
NT∗

∑T−1
t=t0

x∗′t Mty
∗
t

1
NT∗

∑T−1
t=t0

x∗′t Mtx
∗
t

)
p−→ ρ2

(
σ2

v

1 − α2

)(
α2 α

α 1

)
,

W ∗′W ∗

NT

p−→ σ2
v

1 − α2

(
1 α

α 1

)
(82)

where ρ2 denotes ρl2, ρd2, and 1 for the case of Mt = M l2
t ,M

d2
t , and M b2

t , respectively.
After some manipulation, it follows that the smallest eigenvalue of the probability

limit of W ∗′MW ∗(W ∗′W ∗)−1 is 0.

Proof of Theorem 7

From Lemma 7, it is straightforward to show.
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Figure 1: Median of α̂G,l1 (T = 10, N = 200)
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Figure 3: Median of α̂G,d2 (T = 10, N = 200)
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ᾱ

α̂wg
0.2 0.5 1 3 10 

Figure 5: Median of α̂wg (T = 10, N = 200)
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Figure 2: Median of α̂G,l2 (T = 10, N = 200)
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Figure 4: Median of α̂G,b2 (T = 10, N = 200)
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Figure 6: Median of α̂hk (T = 10, N = 200)

48



0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98
0.5

0.6

0.7

0.8

0.9

ᾱ
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Figure 7: Median of α̂L,l1 (T = 10, N = 200)
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Figure 9: Median of α̂L,d2 (T = 10, N = 200)
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Figure 8: Median of α̂L,l2 (T = 10, N = 200)
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Figure 10: Median of α̂L,b2 (T = 10, N = 200)
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Figure 11: Median of α̂G,l1 (T = 15, N = 100)
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Figure 13: Median of α̂G,d2 (T = 15, N = 100)
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Figure 15: Median of α̂wg (T = 15, N = 100)
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Figure 12: Median of α̂G,l2 (T = 15, N = 100)
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Figure 14: Median of α̂G,b2 (T = 15, N = 100)

0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98
0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

ᾱ
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Figure 16: Median of α̂hk (T = 15, N = 100)
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Figure 17: Median of α̂L,l1 (T = 15, N = 100)
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Figure 19: Median of α̂L,d2 (T = 15, N = 100)
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ᾱ

α̂L ,l2 0.2 0.5 1 3 10 

Figure 18: Median of α̂L,l2 (T = 15, N = 100)
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Figure 20: Median of α̂L,b2 (T = 15, N = 100)
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Figure 21: IQR of α̂G,l1 (T = 10, N = 200)
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Figure 23: IQR of α̂G,d2 (T = 10, N = 200)
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Figure 25: IQR of α̂wg (T = 10, N = 200)
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Figure 22: IQR of α̂G,l2 (T = 10, N = 200)
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Figure 24: IQR of α̂G,b2 (T = 10, N = 200)
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Figure 26: IQR of α̂hk (T = 10, N = 200)
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Figure 27: IQR of α̂L,l1 (T = 10, N = 200)
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Figure 29: IQR of α̂L,d2 (T = 10, N = 200)
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Figure 28: IQR of α̂L,l2 (T = 10, N = 200)

0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

ᾱ
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Figure 30: IQR of α̂L,b2 (T = 10, N = 200)
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Figure 31: IQR of α̂G,l1 (T = 15, N = 100)

0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98

0.05

0.10

0.15

0.20

0.25

0.30

0.35

ᾱ
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Figure 33: IQR of α̂G,d2 (T = 15, N = 100)
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ᾱ

α̂wg
0.2 0.5 1 3 10 

Figure 35: IQR of α̂wg (T = 15, N = 100)
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Figure 32: IQR of α̂G,l2 (T = 15, N = 100)
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Figure 34: IQR of α̂G,b2 (T = 15, N = 100)
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Figure 36: IQR of α̂hk (T = 15, N = 100)
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Figure 37: IQR of α̂L,l1 (T = 15, N = 100)
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Figure 39: IQR of α̂L,d2 (T = 15, N = 100)

0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

ᾱ
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Figure 38: IQR of α̂L,l2 (T = 15, N = 100)
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Figure 40: IQR of α̂L,b2 (T = 15, N = 100)
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