
 
Hi-Stat

 
 

 
 

 

 

Discussion Paper Series 
 

No.213 
 
 

A Simple Efficient Instrumental Variable Estimator 
in Panel AR(p) Models 

 
Kazuhiko Hayakawa 

 
May 2007 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Hitotsubashi University Research Unit 
for Statistical Analysis in Social Sciences 

A 21st-Century COE Program 

 
Institute of Economic Research  

Hitotsubashi University 
Kunitachi, Tokyo, 186-8603 Japan 

http://hi-stat.ier.hit-u.ac.jp/ 



A Simple Efficient Instrumental Variable Estimator

in Panel AR(p) Models

Kazuhiko Hayakawa∗†

Department of Economics, Hitotsubashi University

JSPS Research Fellow

May 13, 2007

Abstract

In this paper, we show that for panel AR(p) models with iid errors, an instrumen-

tal variable (IV) estimator with instruments in the backward orthogonal deviation

has the same asymptotic distribution as the infeasible optimal IV estimator when

both N and T , the dimensions of the cross section and the time series, are large. If

we assume that the errors are normally distributed, the asymptotic variance of the

proposed IV estimator is shown to attain the lower bound when both N and T are

large. A simulation study is conducted to assess the estimator.
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thogonal deviation.
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1 Introduction

Since the work of Anderson and Hsiao (1981, 1982), instrumental variables have

been widely used for the estimation of dynamic panel data models.1 However, since

the IV estimator is not generally efficient, Holtz-Eakin, Newey, and Rosen (1988)

and Arellano and Bond (1991) proposed to use the generalized method of moments

(GMM) estimator to improve efficiency. The GMM estimator has subsequently

been refined in a number of studies, including Arellano and Bover (1995), Ahn and

Schmidt (1995, 1997) and Blundell and Bond (1998). However, although the GMM

estimator is generally more efficient than the IV estimator, it is well known that the

GMM estimator is more biased than the IV estimator in finite sample.

In this paper, we focus on the IV estimator and address the efficiency problem of

the IV estimator. Specifically, we show that, for panel AR(p) models with iid errors,

a simple one-step IV estimator is obtained from the backward orthogonal deviation

(BOD) transformation that has the same asymptotic distribution as the infeasible

optimal IV estimator derived by Arellano (2003b) when both N and T are large.

If normality is assumed on the errors, the proposed IV estimator is shown to be

asymptotically efficient. Simulation results reveal that the proposed IV estimator is

almost unbiased, and the difference in dispersions between the feasible optimal IV

estimator and the proposed IV estimator is small when T is large.

The remainder of this paper is organized as follows. Section 2 provides the setup

and the main result. Section 3 presents a Monte Carlo simulation and assess the

theoretical result. Finally, Section 4 concludes.

A word on notation. For a vector x and a matrix A, we define ‖x‖2 = x′x and

‖A‖2 = tr(A′A) where tr(·) denotes the trace operator.

1Recent papers that discuss the IV estimator are Arellano (2003b) and Hahn, Hausman, and Kuer-

steiner (2007), proposing two-step efficient IV estimators and the long difference IV estimator are pro-

posed, respectively.
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2 Setup and Result

2.1 The model and assumptions

Let us consider the following panel AR(p) model:

yit = α1yi,t−1 + α2yi,t−2 + · · · + αpyi,t−p + ηi + vit (1)

= α′xit + ηi + vit (i = 1, ...,N, t = 1, ..., T ) (2)

where α = (α1, ..., αp)′, xit = (yi,t−1, ..., yi,t−p)′, vit has zero mean given by ηi, yi0, ..., yi,t−1

and p is fixed and known.2 For convenience, we assume that yi,0,...,yi,1−p are ob-

served.

(2) can be written in a companion form as

xi,t+1 = Πxit + d1(ηi + vit) (3)

where d1 = (1, 0, ..., 0)′ of dimension p and Π is the p × p matrix given by

Π =

⎛⎝ α1 · · · αp

Ip−1 | O(p−1)×1

⎞⎠ (4)

where Ik is an identity matrix of order k and Ok×� is a k × � matrix of zeros.

We make the following assumptions, which are part of the assumptions made by

Lee (2005).

Assumption 1. {vit} (t = 1, ..., T, i = 1, ...,N) are iid over i and t and indepen-

dent of ηi and xi1, with E(vit) = 0, var(vit) = σ2
v and finite fourth order moment.

{ηi}(i = 1, ...,N) are iid over i with E(ηi) = 0 and var(η) = σ2
η.

Assumption 2. The initial observations satisfy

xi1 = (Ip −Π)−1d1ηi + wi0 (5)

where wi0 =
(∑∞

j=0 Πjvi,−j

)
d1.

Assumption 3. det [Ip − Πz] �= 0 for all |z| ≤ 1.

Assumption 4. Let mj(i, t) = Πjd1vi,t−1−j. For all i, t, and for any r1, ..., r4 ∈
{1, 2, · · · p},

∞∑
j1,··· ,j4=0

|cumr1,··· ,r4 (mj1(i, t),mj2(i, t),mj3(i, t),mj4(i, t))| < ∞. (6)

2The problem how to choose p is extensively discussed by Lee (2005).
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Unlike Lee (2005), we do not need to impose the asymptotic relative ratio be-

tween N and T . Assumptions 1 and 2 are standard ones in the literature.3 Although

Assumption 2 can be relaxed to nonstationary initial conditions, we do not pursue

this here for the purpose of simplicity. However, the main result of this paper is

expected to hold since the initial conditions are negligible when T is large and since

we do not use moment conditions that rely on stationary initial conditions as Blun-

dell and Bond (1998) do. Assumption 3 is the stability condition, and Assumption

4 is necessary to use the central limit theorem for double indexed processes.4

Under Assumptions 2 and 3, xit can be written as

xi,t+1 = (Ip −Π)−1d1ηi + wit (7)

where

wit =

⎛⎝ ∞∑
j=0

Πjvi,t−j

⎞⎠d1. (8)

The model to be estimated is given by

y∗it = α′x∗
it + v∗it (i = 1, ...,N, t = 1, ..., T − 1) (9)

where y∗it = ct [yit − (yi,t+1 + · · · + yiT )/(T − t)], x∗
it = ct [xit − (xi,t+1 + · · · + xiT )/(T − t)],

v∗it = ct [vit − (vi,t+1 + · · · + viT )/(T − t)], and c2
t = (T − t)/(T − t + 1).

2.2 The instrumental variable estimators

The infeasible optimal instruments

Following Arellano (2003a, b), the infeasible optimal IV estimator in a large N and

small T context takes the following form:

α̃opt =

(
1

NT

N∑
i=1

T−1∑
t=1

hitx
∗′
it

)−1(
1

NT

N∑
i=1

T−1∑
t=1

hity
∗
it

)
(10)

where hit = E(x∗
it|yt−1

i ) and yt−1
i = (yi,t−1, ..., yi,0)′. One of the feasible optimal IV

estimators is obtained using a sample linear projection of hit, which is given by

ĥ
LEV

it =

(
N∑

i=1

x∗
ity

t−1′
i

)(
N∑

i=1

yt−1
i yt−1′

i

)−1

yt−1
i . (11)

3See Alvarez and Arellano (2003) for the AR(1) case.
4See Phillips and Moon (1999) and Hahn and Kuersteiner (2002).

4



In this case, the feasible optimal IV estimator is equivalent to the GMM estimator

using yt−1
i as instruments:

α̂LEV
GMM =

(
1

NT

T−1∑
t=1

X∗′
t MLEV

t X∗
t

)−1(
1

NT

T−1∑
t=1

X∗′
t MLEV

t y∗
t

)
(12)

where X∗
t = (x∗

1t, ...,x
∗
Nt)

′, MLEV
t = ZLEV

t (ZLEV ′
t ZLEV

t )−1ZLEV ′
t , ZLEV

t =

(yt−1
1 , ...,yt−1

N )′, and y∗
t = (y∗1t, ..., y

∗
Nt)

′.

One problem of α̂LEV
GMM is that if N and T increase at the same rate, the estimate

of hLEV
it is asymptotically biased (see Arellano 2003a, p.170). This causes a bias

in α̂LEV
GMM . In fact, for the case of p = 1, Alvarez and Arellano (2003) show that

α̂LEV
GMM has a bias of the order O(1/N).5

Using the structure of AR(p) models, Arellano (2003b) shows that the infeasible

optimal IV hit can be rewritten in the following form:

E(x∗
it|yt−1

i ) = ct

[
Ip − 1

T − t
Π(Ip − ΠT−t)(Ip −Π)−1

] [
xit − ιpE(μi|yt−1

i )
]
.

(13)

Under the assumption that E(μi|yt−1
i ) coincides with the linear projection, we have

E(μi|yt−1
i ) =

φ

1 + φ(ι′tV
−1
t ιt)

ι′tV
−1
t yt−1

i (14)

where φ = σ2
μ/σ2

v , V t = σ−2
v E

[
(yt−1

i − μiι�)(yt−1
i − μiι�)

]′, μi = ηi/(1−α′ιp), and

σ2
μ = var(μi). Hence, the infeasible optimal IV estimator is given by

α̂OPT
IV =

(
1

NT

N∑
i=1

T−1∑
t=1

hOPT
it x∗′

it

)−1(
1

NT

N∑
i=1

T−1∑
t=1

hOPT
it y∗it

)
(15)

= α +
(
Â

OPT

IV

)−1
b̂

OPT

IV (16)

where

hOPT
it = ct

[
Ip − 1

T − t
Π(Ip − ΠT−t)(Ip − Π)−1

] [
xit − ιp

φ

1 + φ(ι′tV
−1
t ιt)

ι′tV
−1
t yt−1

i

]
.(17)

5Also see Bun and Kiviet (2006).
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Instruments in the backward orthogonal deviation

We consider the IV estimator using instruments transformed by the BOD trans-

formation.6 Specifically, let us define the variables in the backward orthogonal

deviation as follows:

x∗∗
it =

1
ct

[
xit − xi,t−1 + · · · + xi1

t − 1

]
t = 2, ..., T − 1. (18)

Since x∗∗
it contains all past values of xit, it is expected that linear projection of

x∗
it on x∗∗

it has the same information as that of x∗
it on yt−1

i . Furthermore, we find

that the second parenthesis in (13) can be regarded as demeaning, while the BOD

transformation is a demeaning transformation.7 Thus, we find that x∗∗
it has a similar

structure as hOPT
it .

The IV estimator using x∗∗
it as instruments is given by

α̂BOD
IV =

(
1

NT

N∑
i=1

T−1∑
t=2

x∗∗
it x∗′

it

)−1(
1

NT

N∑
i=1

T−1∑
t=2

x∗∗
it y∗it

)
(20)

= α +
(
Â

BOD

IV

)−1
b̂

BOD

IV . (21)

The following proposition establishes the asymptotic equivalence of the infeasible

optimal IV estimator, α̂OPT
IV , and α̂BOD

IV in the sense that both estimators have the

same asymptotic distribution.

Proposition 1. Let Assumptions 1, 2, and 3 hold. Then, as both N and T tend

to infinity, the infeasible optimal IV estimator α̂OPT
IV and the feasible IV estimator

α̂BOD
IV are consistent. If we further assume that Assumption 4 holds, then, as both

N and T tend to infinity, we have

√
NT (α̂IV − α) →d N

(
0, σ2

v

[
E(wi,t−1w

′
i,t−1)

]−1
)

(22)

where α̂IV denotes α̂OPT
IV and α̂BOD

IV .

Note that the asymptotic variance σ2
v

[
E(wi,t−1w

′
i,t−1)

]−1
is of the same form

as the within groups (WG) estimator derived by Lee (2005).
6The BOD transformation was originally considered by So and Shin (1999) in a time series context.
7Note that xit can be rewritten as

xit = ιpμi + wi,t−1 (19)

since (Ip − Π)−1d1 = 1
1−α′ιp

ιp.
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Remark 1. For the case of p = 1, Alvarez and Arellano (2003) show that α̂LEV
GMM

and the WG estimator, α̂WG, has the following asymptotic distribution:

√
NT

[
α̂LEV

GMM −
(

α1 − 1
N

(1 + α1)
)]

→d N
(
0, 1 − α2

1

)
, (23)

√
NT

[
α̂WG −

(
α1 − 1

T
(1 + α1)

)]
→d N

(
0, 1 − α2

1

)
. (24)

Also, from Proposition 1, we have

√
NT

[
α̂BOD

IV − α1

]→d N
(
0, 1 − α2

1

)
. (25)

Comparing (23), (24) and (25), we find that although all estimators have the

same asymptotic variance, α̂LEV
GMM and α̂WG have asymptotic biases of the order

O(1/N) and O(1/T ), respectively, while α̂BOD
IV − α1 is centered at zero.

Remark 2. Hahn and Kuersteiner (2002) show that if we further assume normality

on vit, then σ2
v

[
E(wi,t−1w

′
i,t−1)

]−1
is equal to the lower bound under large N and

large T asymptotics. Hence, α̂BOD
IV is an efficient IV estimator under large N and

large T asymptotics without an asymptotic bias when vit is normally distributed.

Remark 3. Another advantage of α̂BOD
IV is that since the individual effects are

completely eliminated from both the model and instruments under stationary initial

conditions, the performance of α̂BOD
IV is not affected by the variance ratio of the

individual effects to the disturbances although the typical GMM estimators using

instruments in levels are.8

3 Monte Carlo Simulation

In this section, we compare α̂BOD
IV with other estimators by Monte Carlo simula-

tion. We consider AR(1) and AR(2) models. vit and ηi are drawn from N(0, 1)

independently. We consider the cases of (T,N) = (10,100), (10,500), (15,100),

(15,300), (20,100), (20,200), (50,100), and (100,100). For the AR(1) model, we set

α1 = 0.3,0.6,0.9, and for the AR(2) model, we set (α1, α2) = (0.45,0.45), (0.6, 0.3).

We generate T + p + 50 observations for each i and discard the first 50 periods

to diminish the effect of initial conditions. We compute the median (Median), the

8See Bun and Kiviet (2006), Hayakawa (2007a), and Bun and Windmeijer (2007).
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interquartile range (IQR), and the median absolute error (MAE). The number of

replications is 5000 for all cases.

The estimators to be compared are α̂LEV
GMM , α̂BOD

IV , the GMM estimator using

x∗∗
it as instruments, and the IV estimator using xit as instruments. The GMM

estimator where x∗∗
it are used as instruments is defined by

α̂BOD
GMM =

(
1

NT

T−1∑
t=2

X∗′
t MBOD

t X∗
t

)−1(
1

NT

T−1∑
t=2

X∗′
t MBOD

t y∗
t

)
(26)

where MBOD
t = ZBOD

t

(
ZBOD′

t ZBOD
t

)−1
ZBOD′

t , and ZBOD
t = (x∗∗

1t , ...,x
∗∗
Nt)

′.

α̂BOD
GMM does not share the problem with α̂LEV

GMM that the number of parameters

increases as T gets larger. Although we suspect that discarding some available

instruments results in an efficiency loss, for the case of p = 1, Hayakawa (2007b)

shows that α̂BOD
GMM has the same asymptotic variance as α̂LEV

GMM , while its asymptotic

bias is of the order O(1/NT ).9

The IV estimator using xit as instruments is given by

α̂LEV
IV =

(
1

NT

N∑
i=1

T−1∑
t=1

xitx
∗′
it

)−1(
1

NT

N∑
i=1

T−1∑
t=1

xity
∗
it

)
. (27)

Note that α̂LEV
IV is not exactly the same IV estimator as the one by Anderson

and Hsiao (1981, 1982) since they used the first-difference to remove the individual

effects from the model.

The simulation results for AR(1) and AR(2) model are provided in Tables 1 and

2, respectively. We first consider the AR(1) case. We find from Table 1 that, in

terms of the bias, the IV estimators, α̂LEV
IV and α̂BOD

IV , have little bias for all cases,

while the GMM estimators have non-negligible bias when α = 0.9 and T is less

than 15. Especially α̂LEV
GMM has large bias for all cases. However, with regard to the

IQR, α̂LEV
GMM has the smallest dispersion and α̂LEV

IV has the largest dispersion. Also,

we find that the differences in the IQR of α̂LEV
GMM , α̂BOD

GMM and α̂BOD
IV become quite

small when T is as large as 50. This result is consistent with Proposition 1 where

α̂LEV
GMM , which is a feasible optimal IV estimator, and α̂BOD

IV are shown to have the

same asymptotic variance when N and T are large. For the median absolute error,

9Although we expect that similar results hold for AR(p) models, we do not provide a proof here since

it would become quite long.
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we find that α̂BOD
GMM has the smallest MAE in many cases. However, the difference

in the MAE between α̂BOD
GMM and α̂BOD

IV is fairly small. Next, we discuss the results

for the AR(2) case. The IV estimators are virtually median unbiased and α̂LEV
GMM

has the largest bias. In terms of the IQR, unlike in the AR(1) case, α̂LEV
GMM is not

least dispersed for all cases. For instance, in the case of T ≥ 20, the IQR of α̂BOD
GMM

is smaller than that of α̂LEV
GMM in almost all cases. Also, we find that the difference

in the IQR between α̂LEV
GMM , α̂BOD

GMM , and α̂BOD
IV becomes small when T is large.

In terms of the MAE, although α̂BOD
GMM performs best in many cases, the difference

between α̂BOD
GMM and α̂BOD

IV is quite small.

4 Conclusion

In this paper, we showed that the infeasible optimal IV estimator and the IV esti-

mator using instruments in the backward orthogonal deviation are asymptotically

equivalent in the sense that both estimators have the same asymptotic distribution

when both N and T are large. We further showed that if we assume normality on

the errors, the proposed IV estimator is asymptotically efficient when both N and

T are large. Simulation results demonstrated that in terms of the bias and median

absolute error, the new IV estimator outperforms the GMM and IV estimators using

instruments in levels, which are commonly used in the literature.

Lastly, we note some possible extensions. Although we considered an AR(p)

model with iid errors, it is of great interest to investigate whether the results ob-

tained in this paper apply to more general models and errors, say, models that in-

clude additional regressors besides the lagged dependent variables (Arellano, 2003b)

and/or heteroskedastic errors (Alvarez and Arellano, 2004). Also, it may be inter-

esting to apply Okui’s (2006) method, i.e., a procedure to select the number of

moment conditions so as to minimize the MSE of the estimators, to improve the

GMM/IV estimators using instruments in the backward orthogonal deviation. But

these tasks are left for future research.
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Appendix

Lemma A Let Assumptions 1, 2, and 3 hold. Then, hOPT
it and hBOD

it can be

written as

hOPT
it = ct

[
It − O

(
1

T − t

)] [
wi,t−1 + gOPT

it

]
,

hBOD
it = wit−1 − gBOD

it (28)

where

gOPT
it = ιp

[
μi

(
1 + φκ′

pR
22
i κp

)− φ
[
(1 − α′ιp)(vi,t−1 + · · · + vi,p) + κ′

pR
22
i ζi

]
1 + φ

{
(1 − α′ιp)2(t − p) + κ′

pR
22
i κp

} ]
,(29)

gBOD
it =

(Φ1vi,t−2 + · · · + Φt−2vi1) d1 + Φt−1wi0

t − 1
, (30)

Φj = Π0 + Π1 + · · · + Πj−1 = (Ip − Π)−1(Ip − Πj) (31)

and κp, R22
i , and ζi are defined later.

Proof of Lemma A Following Whittle (1951) and Wise (1955), let us define the

t × t matrix U t as follows.

U t =

⎡⎣ O(t−1)×1 It−1

O1×1 O1×(t−1)

⎤⎦ . (32)

Then, we have

U2
t =

⎡⎣ O(t−1)×2 It−2

O2×2 O2×(t−2)

⎤⎦ , U3
t =

⎡⎣ O(t−3)×3 It−3

O3×3 O3×(t−3)

⎤⎦ , · · ·

Up−1
t =

⎡⎣ O(t−p+1)×(p−1) It−p+1

O(p−1)×(p−1) O(p−1)×(t−p+1)

⎤⎦ , U p
t =

⎡⎣ O(t−p)×p It−p

Op×p Op×(t−p)

⎤⎦ .

Using these expressions, yt−1
i can be written as

yt−1
i = α1U ty

t−1
i + α2U

2
t y

t−1
i + · · · + αpU

p
t y

t−1
i + ηi

⎡⎣ ιt−1

0

⎤⎦+ vt−1
i + rt−1

i (33)

where vt−1
i = (vi,t−1, ..., vi,1, 0)′ =

(
v′

(1),i,v
′
(2),i

)′
, v(1),i = (vi,t−1, ..., vi,p)′, v(2),i =

(vi,p−1, ..., vi1, 0)′, rt−1
i =

(
r′

(1),i, r
′
(2),i

)′
, r(1),i = O(t−p)×1, and r(2),i = (αpyi,−1, αp−1yi,−1+

10



α1yi,−2, · · · · · · , α2yi,−1 + · · · + αpyi,−p+1, yi,0). Since yit is stationary and its condi-

tional mean given by ηi is μi = ηi/(1 − α′ι�),

(It − Δt) ỹt−1
i = ηi

⎡⎣ ιt−1

0

⎤⎦− μi(It − Δt)ιt + vt−1
i + rt−1

i

= ηi

⎡⎢⎢⎢⎣
0(t−p)×1⎛⎝ ιp−1

0

⎞⎠− κp

1−α′ιp

⎤⎥⎥⎥⎦+ vt−1
i + rt−1

i

= vt−1
i + r̃t−1

i

= Rt−1
i

where ỹt−1
i = yt−1

i −μiιt, Δt =
(
α1U t + α2U

2
t + · · · + αpU

p
t

)
, r̃t−1

i = (01×(t−p), r̃
′
(2),i)

′,

and

r̃(2),i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αp(yi,−1 − μi)

αp−1(yi,−1 − μi) + αp(yi,−2 − μi)
...

α2(yi,−1 − μi) + · · · + αp(yi,−p+1 − μi)

yi0 − μi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then, it follows that

V −1
t =

(
It − Δ�

′) ⎡⎣ It−p O

O R22
i

⎤⎦ (It − Δt) (34)

where R22
i =

[
σ−2

v E(r̃(2),ir̃
′
(2),i)

]−1
.

Therefore, using

(It − Δt) ιt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ιt−p(1 − α′ιp)

1 − α1 − α2 − · · · − αp−2 − αp−1

1 − α1 − α2 − · · · − αp−2

...

1 − α1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎣ ιt−p(1 − α′ιp)

κp

⎤⎦ (35)

we have

ι′tV
−1
t ιt = (1 − α′ιp)2(t − p) + κ′

pR
22
i κp, (36)
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ι′tV
−1
t yt−1

i = (1 − α′ιp) [ηi(t − p) + vi,t−1 + · · · + vi,p] + κ′
pR

22
i ζi (37)

where

ζi = ηi

⎛⎝ ιp−1

0

⎞⎠+ v(2)i + r(2)i. (38)

The result for hBOD
it is readily obtained after a simple manipulation.

Lemma B Let Assumptions 1, 2, and 3 hold. Then,
∥∥∥E(gOPT

it w′
i,t−1)

∥∥∥ and
∥∥∥E(gBOD

it w′
i,t−1)

∥∥∥
are O(1/t).

Proof of Lemma B First, note that E(μiwi,t−1) = Op×1. Next, since p is fixed,

we have∥∥E [
(vi,t−1 + · · · + vi,p)w′

i,t−1

]∥∥ = σ2
v

∥∥∥d′
1

[
(Ip − Π)−1(Ip − Πt−p)

]′∥∥∥ = O(1),∥∥E [
κ′

pR
22
i (ζi)w

′
i,t−1

]∥∥ = O(1),

∥∥E [
(Φ1vi,t−2 + · · · + Φt−2vi1) d1w

′
i,t−1

]∥∥ = σ2
v

∥∥∥∥∥∥
t−2∑
j=1

Φjd1d
′
1(Π

′)j

∥∥∥∥∥∥ = O(1).

The second result holds since all the elements are of dimension p×1 or p×p. Then,

the result follows from the fact that the denominators of gOPT
it and gBOD

it are O(t).

Next, we derive the asymptotic properties of the IV estimators. Note that IV

estimators α̂OPT
IV and α̂BOD

IV can be written as

√
NT (α̂IV − α) = Â

−1√
NT b̂ = Â

−1
ĉ (39)

where Â denotes Â
OPT

IV , and Â
BOD

IV , and so on.

The asymptotic behavior of Â, b̂ and ĉ are given in the following lemma.

Lemma C Let Assumptions 1, 2, and 3 hold. Then, as both N and T tend to

infinity,

(a) Â
OPT

IV , Â
BOD

IV →p E
(
wi,t−1w

′
i,t−1

)
, (40)

(b) b̂
OPT

IV , b̂
BOD

IV →p 0. (41)

If we further assume that Assumption 4 holds, then as both N and T tend to infinity,

(c) ĉOPT
IV , ĉBOD

IV →d N
[
0, σ2

vE
(
wi,t−1w

′
i,t−1

)]
. (42)

12



Proof of Lemma C To derive the results, we use the following decomposition:

x∗
it = Ψtwi,t−1 − ctṽitT , (43)

Ψt = ct

(
Ip − 1

T − t
ΠΦT−t

)
, (44)

ṽitT =
(ΦT−tvit + Φ2vi,T−2 + · · · + Φ1vi,T−1) d1

T − t
. (45)

(a): First, we consider Â
OPT

IV . Using Lemma A, B, and the above decomposition,

we have

E
(
Â

OPT

IV

)
=

1
T

T−1∑
t=1

E
(
hOPT

it x∗′
it

)
=

1
T

T−1∑
t=1

[
Ip − O

(
1

T − t

)][
E
(
wi,t−1w

′
i,t−1

)
+ O

(
1
t

)]
→ E

(
wi,t−1w

′
i,t−1

)
.

The last convergence comes from T−1
∑T−1

t=1 O(1/(T − t)) = O(log T/T ) → 0.

var
(
Â

OPT

IV

)
are easily shown to tend to zero. For α̂BOD

IV , we have

E
(
Â

BOD

IV

)
=

1
T

T−1∑
t=1

[
E(wi,t−1w

′
i,t−1)

{
Ip + O

(
1

T − t

)}
+ O

(
1
t

)]
→ E(wi,t−1w

′
i,t−1).

(b),(c): First, we consider ĉOPT
IV . Since E

(
ĉOPT

IV

)
= 0, and E(hOPT

it v∗itv
∗
ish

OPT ′
it ) =

E
(
hOPT

it Et(v∗itv
∗
is)h

OPT ′
it

)
= 0 for t > s, where Et(·) denotes the conditional expec-

tation given ηi and {vi,t−j}∞j=1, we have

var
(
ĉOPT

IV

)
=

1
T

var

(
T−1∑
t=1

hOPT
it v∗it

)
=

σ2
v

T

T−1∑
t=1

E
(
hOPT

it hOPT ′
it

)
=

σ2
v

T

T−1∑
t=1

[
E
(
wi,t−1w

′
i,t−1

)
+ O

(
1
t

)]
→ σ2

vE
(
wi,t−1w

′
i,t−1

)
.

Then, using the similar argument as Hahn and Kuersteiner (2002) and Lee (2005),

we have

ĉOPT
IV →d N

[
0, σ2

vE
(
wi,t−1w

′
i,t−1

)]
. (46)

The result for ĉBOD
IV is obtained in a similar way.

13



From (c), it is straightforward to show that b̂
BOD

IV , b̂
OPT

IV →p 0.

Proof of Proposition 1 Using Lemma C, the results are easily obtained.
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