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Abstract 
 
Using techniques of spatial econometrics, this paper investigates σ-convergence of 
provincial real per capita gross domestic product (GDP) in China. The empirical evidence 
concludes that spatial dependence across regions is strong enough to distort the 
traditional measure of σ-convergence. This study focuses on the variation of per capita 
GDP that is dependent on the development processes of neighboring provinces and cities. 
This refinement of the conditional σ-convergence model specification allows for analysis 
of spatial dependence in the mean and variance. The corrected measure of σ-convergence 
in China indicates a lower level of dispersion in the economic development process. This 
implies a smaller divergence in real per capita GDP, although convergence across regions 
is still a challenging goal to achieve in the 2000s.  
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1 Introduction 
 
Sigma (σ) convergence is a classic measurement of regional disparity (of real per capita 

GDP, income, or employment, etc.). It is the least complex measure of income inequality. 

σ-convergence is a phenomenon of decreasing dispersion of real per capita GDP or 

income (in logarithmic form) across regions over time. An alternative to σ-convergence 

is the β-convergence model. The β-convergence model gauges the negative partial 

correlation between growth in GDP and its initial level. Therefore, the less developed 

regions would tend to grow faster than the developed areas, leading to eventual equality 

(see Barro and Sala-i-Martin [1995], Sala-i-Martin [1996] for more details). Among ever 

growing country studies of growth convergence, there are several papers, both in English 

and Chinese, on the growth experience of the Chinese economy (see Chen and Fleisher 

[1996], Lin and Liu [2003] and references cited there).  

 
The traditional use of σ- or β-convergence in most empirical applications does not 

explicitly consider spatial heterogeneity or spatial dependence. However, the 

convergence is calculated from a set of heterogeneous cross section units. Most findings 

of the non-convergence of dispersion in real per capita GDP or income in China and 

other countries may be due to model misspecification. This misspecification includes 

spatial dependence, time series correlation or data nonstationarity in general. From a 

spatial econometric perspective, Rey and Montouri [1999] examined the β-convergence 

in regional income for the U. S. economy. LeSage [1999] and Ying [2003] offered 

exploratory spatial analyses of β-convergence in China based on the provincial GDP 

growth. 

 
The relationship between σ- and β-convergence is controversial (Friedman [1992], Quah 

[1993]). The general consensus is that β-convergence does not necessarily imply σ-

convergence. However, β-convergence could be derived from σ-convergence (see also 

Bernard and Jones [1996]). Because of standard deviation’s simple formulation, both 

Friedman [1992] and Quah [1993] called for more direct investigation of σ-convergence. 

Further, the spatial analysis of σ-convergence is still an unexplored territory. 
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The spatial dependence of cross section units may vary over time and this changes the 

measure of σ-convergence. The time path of σ-convergence is typically used to study the 

development process of a nation. Without considering the effects of spatial dynamics, the 

traditional measure of σ-convergence may be biased and misleading. Rey and Dev [2004] 

address the issue of σ-convergence in the presence of spatial effects. The focus of this 

paper is the measure of σ-convergence with spatial dynamics. Using methods of spatial 

econometrics (Anselin[1988]), we investigate spatial dependence in the mean and in the 

variance. The mean process is a spatial lag model. The variance process is analyzed using 

a generalized autoregressive conditional heteroscedasticity (GARCH) specification 

(Engle [1982], Bollerslev [1986]) for the spatial data. This is a novel approach to measure 

the regional decomposition of σ-convergence.  

 
Section 2 reviews the concept and definition of σ-convergence. Based on the Chinese real 

per capita GDP, preliminary data analysis for spatial heterogeneity and dependence 

across 30 provinces and cities over 27 years is presented. In Section 3, we formalize the 

model of spatial dependence in the mean and in the variance. Section 4 outlines the quasi-

maximum likelihood estimation (QMLE), and presents the empirical results of real per 

capita GDP in China. Our analysis of conditional σ-convergence indicates a lower level 

of dispersion in real per capita GDP but not necessary the convergence. The provinces 

and cities located in the east have begun to prosper, while central and west regions 

struggle to catch up. The developmental goal toward income equality or convergence 

across regions is challenging. The last section concludes. 

 
 
2 σ-convergence 
 
Let Yit be the variable of interest in measuring the development of region i at time t (i = 

1,2…,N; t = 1,2,…,T). Denote the logarithm yit = ln(Yit), and ∑
=

=
N

1i
itt y

N
1y the regional 

average at time t. Then, the standard deviation of yit for a nation composed of N regions 

at time t is defined by: 
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If st is decreasing over time, then the national development process is considered σ-

convergent. The convergence process of standard deviation or st indicates the eventual 

equality or parity of the regional growth and development process. Equivalently, for each 

time period t, st can be expressed as the estimated standard error of the constant (across 

regions) regression model as follows: 

 
ittity ε+µ=   (2.1) 

 
For simplicity, we first assume that the model error εit is independently distributed with 

zero mean and variance σt
2. The estimated model is ittit eyy +=  where eit is the residual 

and st is the sample estimate of σt. The important question is whether the variable yit is 

free of spatial dependence. In other words, for a given time t, is the assumed constant 

estimate of standard error σt or st consistent with the heterogeneous spatial (cross section) 

data involved? 

 
Using panel data of logged real per capita GDP across 30 provinces and cities 

(henceforth, “states”)1 in China, Figure 1 plots the time series estimates of the mean (left 

panel) and standard error (right panel) from 1978 to 2004. It is clear that the cross section 

mean of logged real per capita GDP increased over time, and the standard error decreased 

first until 1990, then increased thereafter. Without considering the spatial correlation or 

dependence across states, there is a clear pattern of a divergent process in the standard 

errors since 1990. 

 

                                                           
1 The 30 cross section units or states are based on the administrative division of China. Panel data series on 
per capita GDP across these 30 states over 27 years from 1978 to 2004 are obtained from various years of 
Statistical Yearbook of China. The latest data of Chongqing city is included in Sichuan province. For 
spatial analysis, the “island” Hainan is assumed to be “connected” with the nearest inland Guangdong 
province. See Appendix Table A.1 for the complete list of states as well as their regional and GDP level 
classifications. 
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Figure 1: Mean and Standard Error of Logged Real Per Capita GDP:  

1978 - 2004 

 
 
3 Spatial Dependence 
 
In the literature of spatial econometrics (Anselin [1988]), Moran’s Index I is used to 

study the spatial dependence of yit = ln(Yit). From the constant regression equation 

(2.1), titit y µ−=ε  and εit is assumed to be normally distributed with zero mean and 

constant variance σt
2. Let εt = [ε1t, ε2t, …, εNt]´. The Moran’s Index for time t is defined 

by: 

 

t
'
t

t
'
t

t
W

I
εε
εε

=   (3.1) 

 
The sample estimate of It is obtained by replacing the residual titit yye −=  for εit. We 

note that W is an N by N, row-standardized, zero-diagonal, spatial weight matrix. For 

simplicity, we assume W is a time independent, location-based, binary-contiguity, weight 

matrix, with value 1 for the adjacent neighbors and 0 otherwise2. 

 

                                                           
2 Anselin [1988] provides detailed discussions of defining and using various forms of spatial weight matrix 
to study the spatial dependence in cross section data. A more realistic but subjective alternative is to weight 
neighbors differently with their economic influence such as output, consumption, or employment. For 
example, using GDP level Yit to construct the economic weights as W* = W.*E where the element of E 

matrix is defined by: 
ji

ij YY
1E
−

=  and ∑
=

=
T

1t
iti Y

T
1Y is the i-th state average of Yit over time. The 

notation “.*” means the element-by-element multiplication of matrices. 
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The standardized It is normally distributed, and it is used to test the significance of spatial 

dependence across regions. In addition, Lagrangian Multiplier tests are available for 

testing the specific structure of spatial dependence (see Anselin [1988], Anselin, Bera, 

Florax and Yoon [1996], Anselin and Rey [1991])3. 

 
In Figure 2 below, the time varying plot of the standard error st (left panel) is compared 

with the corresponding Moran’s indices It (right panel).  It varies over time, and 

resembles the increasing trend of st, particularly, after 1990. From that period on, the 

structure of spatial dependence changed. We suspect that the divergence of standard 

deviations may be caused by the increasing spatial dependence across states from the 

early 1990s. Without incorporating the spatial correlation or dependence, the measure of 

σ-convergence (that is, estimated standard error) may be misleading. 

 
 

Figure 2: Standard Errors and Standardized Moran’s Index of Logged Real Per Capita 
GDP: 1978 - 2004 

  
 
 
Appendix Table A.2 lists the estimated mean, standard error, and standardized Moran’s 

index from the constant regressions. In addition, the p-values of Moran’s index are 

reported. These p-values indicate the significance of the spatial dependence across states 

for all years. 

 

                                                           
3 These well-known tests were designed for testing the model specification of spatial dependence. But they 
are limited for diagnostic checking of an estimated spatial model. Anselin and Keleijian [1997] extended 
the Moran’s I test procedure for spatial error correlation in the presence of spatially lagged dependent 
variables. The asymptotic properties of this test statistic were studied for several applications, including a 
spatial lag model, by Keleijian and Prucha [2001]. However, this test procedure is derived based on the 
estimation method with instrumental variables. 



 6

3.1  Higher Orders of Spatial Dependence 
 
So far, we have considered the first-order spatial dependence based on the contiguity 

spatial weight matrix W. Higher orders of spatial weight matrices (that is, “neighbors’ 

neighbors”) can be formally constructed by taking the power of the first-order contiguity 

weight matrix W with redundant and circular elements removed (see Anselin [1988]). 

Therefore, similar to time series analysis of autocorrelation and partial autocorrelation 

functions, these matrices can be applied to study the spatial dependence at higher orders. 

In particular, the spatial autocorrelation coefficients φkt (for order k at time t) are 

estimated from: 

 
,...2,1k,yWy ttkkttt =ε+φ+α=  (3.2)

 
Where, Wk is the k-th order of contiguity spatial weight matrix as described above. 

Similarly, the spatial partial autocorrelation coefficients are calculated as the estimated 

coefficient ρkt for the last (k-th) lag from the regression: 

 
,...2,1k,yWyWyWy ttkktt2t2t1t1tt =ε+ρ++ρ+ρ+α= L  (3.3) 

 
The estimated spatial autocorrelation coefficients φkt and spatial partial autocorrelation 

coefficients ρkt with their corresponding estimated standard error are the basis for model 

specification. Identification of the proper order of spatial dependence is arrived at by the 

same methodology as time series analysis for model identification. 

 
For spatial analysis, a sparse matrix computation may be required for a large dimension 

of spatial weight matrix W. In the Appendix, Table A.3 and A.4 report the estimates of 

spatial autocorrelation and partial autocorrelation coefficients up to the 5-th order of 

spatial dependence, respectively. Although the highest order for the Chinese contiguity 

weight matrix is “6”, only one link (Shanghai and Xinjiang) is left in W6. The next 

highest order “5” is used. These regression results confirm that only the first spatial lag is 

required to specify the spatial dependence of real per capita GDP in China. Therefore, we 

assume the first-order, spatial lag model for the Chinese real per capita GDP 

specification. Further analysis of spatial dependence can then be divided into two parts. 
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3.2 Spatial Dependence in the Mean 
 
Let yt = [y1t, y2t, …, yNt]´. A spatial lag model of the first order is defined by: 

 
ttttt Wyy ε+ρ+α=  (3.4) 

 
Equivalently, we write the first order spatial dependent process for the mean µit as 

follows: 

 

t

N

ij,1j
.jttit

ititit

yW

y

∑
≠=

ρ+α=µ

ε+µ=

 

 
Where, Wj. is the j-th row of spatial weight matrix W. Therefore µit varies across state i 

for time t. The variation of µit over i comes from the effect of spatial dependence.  

 
3.3 Spatial Dependence in the Variance 
 
It is possible to describe the spatial dependence in the variance similar to that in the mean 

process. Denote σit
2 as the state and time-varying variance, and σt

2
 = [σ1t

2, σ2t
2, …, σNt

2]´ 

is the vector of heterogeneous variances across states for time t. We further assume that 

the standardized error uit = εit/σit follows a standardized normal distribution. 

 
Conditional to the neighboring states’ variances and squared error, the variance process is 

defined by: 

 
2
tt

2
ttt

2
t WW σδ+εγ+ς=σ  (3.5)

 

or, ∑∑
≠=≠=

σδ+εγ+ς=σ
N

ij,1j

2
t.jt

N

ij,1j

2
t.jtt

2
it WW . 

 
More compactly, 

 
)W()WI( 2

ttt
1

t
2
t εγ+ςδ−=σ −  
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This resembles the well-known process of Autoregressive Conditional Heteroskedasticity 

(ARCH) pioneered by Engle (1982) and generalized (GARCH) by Bollerslev (1986) for 

the study of financial time series. The stability of the variance process requires that the 

matrix (I-δtW) to be invertible. That is 1/ωmin < δt < 1/ωmax = 1, where ωmax and ωmin are 

the respective maximal and minimal elements of the eigenvalues of the row-standardized, 

contiguity spatial weight matrix W. Furthermore, because the variance must be positive, 

the sufficient conditions: ςt>0, δt≥0, γt≥0 are imposed. Therefore, 1 > δt  ≥ 0. If δt = 0, it is 

a simple ARCH model. If γt = 0, then the estimated variance σt
2

 does not vary across the 

states. The special case of integrated GARCH specification is obtained by assuming δt + 

γt = 1, which is stable as long as 1 > δt  ≥ 0. (see also, Nelson [1990] for the time series 

discussion of stationarity and persistence of the variance process). 

 
It is our understanding that this is the first attempt to apply a GARCH formulation for 

spatial analysis in the variance process. Although the estimated variance as a measure of 

volatility varies over time and may exhibit asymmetry and non-normality, we will not 

investigate those abnormalities in our spatial model. Our interest is to study the cross-

section variation of σ-convergence, both nationally and regionally. We find no evidence 

to support that regional pattern of σ-convergence mirrors the national process. 

 
 
4 Model Estimation 
 
Equation (3.4) and (3.5) constitute the complete model with spatial dependence in the 

mean and in the variance. 

 
The joint normal likelihood of yt = [y1t, y2t, …, yNt]´ is  

 

)WI(
2

)y(
exp

2

1);y(f t

N

1i
2
it

2
itit

2
it

tt ρ−










σ
µ−

−
πσ

=θ ∏
=

 

 
where  
 

t

N

ij,1j
.jttit yW∑

≠=

ρ+α=µ  
(3.4)’
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∑∑
≠=≠=

σδ+εγ+ς=σ
N

ij,1j

2
t.jt

N

ij,1j

2
t.jtt

2
it WW  

(3.5)’

'
ttttttttt ),,,,(and0,0,0 δγςρα=θ≥δ≥γ>ς  

 
If γt = 1- δt, the variance follows the integrated GARCH or IGARC(1,1) process. Then, 

the corresponding log-likelihood function is: 

 

WIln
)y(

2
1)ln(

2
1)2ln(

2
N);y(fln)y|( t

N

1i
2
it

2
itit

N

1i

2
it

N

1i
tttt ρ−+











σ

µ−
−σ−π−=θ=θ ∑∑∑

===

ll  

 
The maximum likelihood estimator of θ is obtained by: 

 
)y|(maxargˆ

ttt θ=θ ll  
 
For a small sample used in this study, the normality assumption is likely to be violated. A 

robust method estimation is quasi-maximum likelihood which has routinely applied in 

most of financial time series model (see Bolleslev [1986]), and it can be used for spatial 

model estimation. The asymptotic theory of QMLE for spatially autoregressive model has 

been developed by Lee [2004]. Finally diagnostic checking of the estimated errors or 

residuals is performed to make sure that the estimated model is free of spatial correlation. 

Computations were made using GPE2 econometric package for GAUSS software (Lin 

[2001]). 

 
4.1 Empirical Results: Spatial Dependence in the Mean 
 
By considering only the spatial dependence in the mean process (3.4) or (3.4)’, the 

special case of constant variance (across states) σt
2 is examined first. It is useful to 

acknowledge the effects of spatial correlation in the measure of σ-convergence. 

 
Appendix Table A.5 reports the maximum likelihood estimates of (3.4) or (3.4)’. For all 

years, the parameter of the first-order spatial lag is shown to be statistically significant. 

Therefore, without considering spatial dependence, the simple calculation of standard 

deviations is misleading when it is interpreted for σ-convergence. Further, we verify the 
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model performance with two statistics of goodness of fit: log-likelihood and squared 

correlation of actual and fitted variables.  

The maximum likelihood estimate of the standard errors ∑
=

ε=σ
N

1i

2
itt ˆ

N
1ˆ   is now 

corrected for the spatial dependence in the mean. In Figure 3, tσ̂ is plotted with and 

without spatial effects (right panel). The difference between the two measures is the 

extent of spatial effect on the measure of σ-convergence. The divergence of standard 

errors continues to be the norm, but its trend has been reduced drastically. This confirms 

that the increasing values of standard deviations are largely due to the increasing spatial 

dependence after 1990. However, it is probably too optimistic to clam the σ-convergence 

in the last few years of the sample period. It is also interesting to plot the state-varying 

means µit over time to view the development process in detail (left panel). All states are 

experiencing similar real per capita GDP growth. The solid line in the middle is the 

average of the estimated mean across states for each year. 

 
 

Figure 3: Means and Standard Errors of Logged Real Per Capita GDP with Spatial 
Dependence Correction in the Mean: 1978 - 2004 

 
 
 
4.2 Empirical Results: Spatial Dependence in the Mean and Variance 
 
Table A.6 reports the parameter estimates for the complete model consisting of equations 

(3.4) and (3.5) (or equivalently, (3.4)’ and (3.5)’). The persistence or coherence in the 

spatial variance is evident where the sum of estimated unrestricted parameters of δt and γt 

equals to 1. Therefore the final model we estimate is a spatial AR(1)-IGARCH(1,1) 

model. We note that the constant term ζt of the variance equation is essentially 0, 
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indicating the equivalent process of exponentially weighted moving average (EWMA) of 

the variances across states. 

 
By allowing for state-varying means and standard errors in the model specification, the 

estimated model indicates significant spatial dependence effects in both the mean and 

variance. In Figure 4, estimated series of µit (left panel) and σit (right panel) are plotted. 

Changes in the estimated mean and standard error over state and time are observed. The 

solid curve in each of the diagrams represents the average state-varying mean and 

standard error over time, respectively. 

 
Consistent with previous results, the average of the standard errors corrected for spatial 

dependence in the mean and variance are almost flat around 0.4. The slight decrease of 

this average from 1999 is of particularly interesting. This reflects a slow down of the 

divergent process although it is difficult to infer about the convergence in the 2000s.  

 
 

Figure 4: Means and Standard Errors of Logged Real Per Capita GDP with Spatial 
Dependence Correction in the Mean and Variance: 1978 - 2004 

 
 
 
One of the advantages of studying state-varying standard errors is to group states with 

similar characteristics and then study their own pattern of σ-convergence. In addition to 

grouping states by regional classification (East, Central, and West), we can also group 

states according to their per capita GDP level. We can then examine σ-convergence or 

divergence for states in different regions or at different levels of economic development. 

For the later, we compare states with high per capita GDP (higher than the two-third 

quantile) with that of the low GDP states (lower than the one-third quantile). 
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Figure 5: Standard Errors of Logged Real Per Capita GDP with Spatial Dependence 
Correction in the Mean and Variance for 3 Regions and 3 GDP Levels: 1978 - 2004 

  

  

  
Note: See Appendix Table A.1 for the region classification (East, Central, and West) and 
per capita GDP level classification (High, Medium, and Low).  
 
Looking at state and time-varying patterns of standard errors for the three development 

regions (East, Central, and West), from the left panels of Figure 5, we find a slight trend 

reversal from divergence to convergence in the 2000s for all regions. While Central and 

West regions struggle to catch up, it is not clear that there is a sustainable convergence. 

 
Because of the uneven allocation of natural resources and state preferential policies 

biased toward coastal provinces and cities in China since 1978, the Eastern region tends 

to be rich and the Western region poor (see, for example, Lin and Liu [2003]). Based on 
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three levels of per capita GDP (High, Medium, and Low), the right panels of Figure 5 

reveal no change or slight divergence in the standard errors for all regions. The 

conclusions based on either regional or GDP level classification are consistent and 

essentially the same. The developed provinces and cities have begun to prosper, but the 

less developed regions are lagging behind. 

 
The Eastern region enjoyed favorable development policies in agriculture, labor 

migration, and international trade throughout the period studied. Deepening reform in 

financial and banking industries and a restructuring in government enterprises are 

expected to speed up the development and convergence process. The current policy is to 

develop the Central and Western regions by replicating the development strategies used 

in the Eastern region. The hope is that there will be a reversal of the divergent trend 

(income inequality) and a tendency of σ-convergence (income equality) in the regional 

development of China. 

 
 
5 Conclusion 
 
This paper investigates σ-convergence in China from 1978 to 2004 using a contiguity-

based weights matrix for spatial dependence among 30 provinces and cities4.  

 
To conclude, the methodology of spatial econometrics more accurately measures σ-

convergence conditioned on spatial dependence with neighboring states. The finding is 

that models corrected for spatial dependence have lower standard errors and thus a 

reduced income disparity across regions. In China, the developed provinces and cities 

located in the east have begun to prosper, while central and west regions struggle to catch 

up. However, the analysis does not suggest that there is income equality or convergence 

at least not until the end of the study period. It is clear that the future direction of regional 

convergence depends on the on-going policy to develop rural Central and West with 

substantial regional policy expenditures for income transfer and redistribution.  

                                                           
4 The alternative formulation is to use economic weights matrix W* defined in footnote 2. With economic 
weights matrix W* in place of contiguity-weights matrix W, we obtain similar empirical results and 
conclusion about the σ-convergence. Interested readers may request for details of the model estimation 
results using W*. 
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Spatial consideration is equally important for time series correlations in panel data. In this 

study, we studied cross section correlations of σ-convergence. The time path of 

conditional variances or standard errors is obtained through conventional comparative 

static analysis. Extension of dynamic analysis in time and space is the direction of future 

research. 
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Appendix 
 
Table A.1 List of 30 Provinces, Areas, and Cities 
 
 Region 

Classification 
Real Per Capita GDP Level (1978, 2004, and 
Average of 1978-2004, in 1978 RMB) 

Beijing East 1290.0       11768.       4529.3 (High)  
Tianjin East 1160.0       10679.       3758.1 (High) 
Hebei East 362.00       4053.9       1388.3 (Medium) 
Shanxi Central 365.00       3388.7       1320.2 (Medium) 
Inner Mongolia West 317.00       3195.7       1139.0 (Medium) 
Liaoning East 680.00       5213.1       2087.4 (High) 
Jilin Central 381.00       4215.5       1585.1 (Medium) 
Heilongjiang Central 564.00       3325.2       1414.3 (Medium) 
Shanghai East 2498.0       23601.       8465.3 (High) 
Jiangsu East 430.00       7192.1       2360.7 (High) 
Zhejiang East 331.00       6568.8       2161.3 (High) 
Anhui Central 244.00       2464.7       936.42 (Low) 
Fujian East 273.00       4370.9       1540.7 (Medium) 
Jiangxi Central 276.00       2265.0       903.67 (Low) 
Shandong East 316.00       5767.1       1856.4 (High) 
Henan Central 232.30       2364.8       907.26 (Low) 
Hubei Central 332.00       4301.0       1592.2 (High) 
Hunan Central 286.00       2655.2       1033.5 (Medium) 
Guangdong East 369.00       6157.8       2177.8 (High) 
Guangxi West 225.00       1578.6       647.73 (Low) 
Hainan East 314.00       3874.9       1586.4 (High) 
Sichuan Central 262.00       2205.6       888.54 (Low) 
Guizhou West 175.00       1297.8       551.05 (Low) 
Yunnan West 223.35       2269.1       935.18 (Low) 
Xizhang West 375.00       2513.4       1021.5 (Medium) 
Shaanxi West 291.00       2378.2       949.31 (Low) 
Gansu West 348.00       2299.7       972.51 (Low) 
Qinghai West 428.00       2151.9       935.91 (Low) 
Ningxia West 370.00       3577.4       1412.8 (Medium) 
Xinjiang West 313.00       2516.9       1117.1 (Medium) 
Note: GDP level classification of states is based on the average real per capita GDP in 
constant 1978 value: High (higher than the two-third quantile, or 1585.1), Medium 
(middle-third quantile), and Low (lower than the one-third quantile, or 972.51). 
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Table A.2 Estimated Means, Standard Errors and Standardized Moran’s Index 
 
 Mean 

(µ) 
Standard Error  
(σ) 

Standardized Moran’s Index  
(P-Value) 

1978 5.9346 0.56013 2.6584 
(0.0039251) 

1979 5.9961 0.55676 2.7718  
(0.0027876) 

1980 6.0701 0.56146 2.7125  
(0.0033386) 

1981 6.1242 0.54792 2.8206  
(0.0023967) 

1982 6.2084 0.53097 2.7544  
(0.0029402) 

1983 6.2960 0.52988 2.8628  
(0.0020993) 

1984 6.4355 0.53145 2.9885  
(0.0014017) 

1985 6.5480 0.52891 3.0035 
(0.0013344) 

1986 6.6056 0.52952 3.1338  
(0.00086267) 

1987 6.6893 0.52989 3.1532  
(0.00080733) 

1988 6.7774 0.53631 3.1213  
(0.00090035) 

1989 6.8070 0.53208 2.9252  
(0.0017212) 

1990 6.8503 0.52886 2.9394  
(0.0016445) 

1991 6.9190 0.53626 3.0055  
(0.0013259) 

1992 7.0451 0.54719 3.3044 
(0.00047582) 

1993 7.1710 0.55528 3.4970  
(0.00023523) 

1994 7.2861 0.56657 3.6392  
(0.00013672) 

1995 7.3858 0.57789 3.7064  
(0.00010513) 

1996 7.4846 0.58347 3.7638  
(8.3671e-005) 

1997 7.5771 0.59009 3.8045  
(7.1053e-005) 

1998 7.6582 0.59565 3.8270 
(6.4850e-005) 

1999 7.7340 0.60389 3.8685  
(5.4747e-005) 

2000 7.8150 0.60973 3.9063  
(4.6869e-005) 

2001 7.9030 0.61326 4.0051  
(3.1002e-005) 

2002 7.9988 0.61598 4.0375  
(2.7017e-005) 

2003 8.1049 0.61963 4.0384  
(2.6911e-005) 

2004 8.2161 0.62753 4.1492  
(1.6679e-005) 
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Table A.3 Spatial Autocorrelation Function 
 

Order 
Year 

1 2 3 4 5 

1978 0.59781* 
0.19937 

-0.11522      
0.37687 

0.025526      
0.34612 

-0.013682     
0.086006 

0.046249     
0.033872 

1979 0.62310*      
0.19309 

-0.092555      
0.37650 

0.094133      
0.34628 

-0.020561     
0.084783 

0.037336     
0.033757 

1980 0.60763*      
0.19673 

-0.11643      
0.37938 

0.056934      
0.34535 

-0.022621     
0.084548 

0.042704     
0.033457 

1981 0.63282*      
0.19058 

-0.16055      
0.38618 

-0.020403      
0.34941 

-0.026004     
0.082097 

0.040710     
0.032400 

1982 0.62527*      
0.19369 

-0.16649      
0.38611 

-0.077484      
0.35024 

-0.027129     
0.078816 

0.041061     
0.030942 

1983 0.64314*      
0.18802 

-0.034719      
0.37450 

-0.036410      
0.34851 

-0.025381     
0.077652 

0.038331     
0.030608 

1984 0.65738*      
0.18224 

-0.0053865      
0.37225 

-0.051324      
0.35178 

-0.032706     
0.076353 

0.038317     
0.030106 

1985 0.66053*      
0.18136 

-0.022479      
0.37530 

-0.052076      
0.35328 

-0.035379     
0.074879 

0.036012     
0.029582 

1986 0.67817*      
0.17509 

0.0030911      
0.37216 

-0.014546      
0.35072 

-0.035207     
0.074337 

0.034527     
0.029440 

1987 0.67326*      
0.17521 

0.056452      
0.36891 

0.0099555      
0.34798 

-0.038310     
0.073461 

0.034176     
0.029128 

1988 0.66374*      
0.17737 

0.060931      
0.37003 

0.050446      
0.34764 

-0.038143     
0.073453 

0.033950     
0.029152 

1989 0.62478*      
0.18776 

0.064564      
0.37151 

0.047506      
0.34854 

-0.040016     
0.072659 

0.034494     
0.028788 

1990 0.62347*      
0.18734 

0.029978      
0.37458 

0.038791      
0.34802 

-0.041641     
0.071807 

0.036578     
0.028336 

1991 0.62472*      
0.18500 

0.038800      
0.37653 

0.0057588      
0.34603 

-0.042649     
0.071972 

0.037282     
0.028395 

1992 0.67186*      
0.17108 

0.046519      
0.37885 

-0.030938      
0.34711 

-0.048448     
0.071812 

0.036131     
0.028439 

1993 0.68706*      
0.16398 

0.15117      
0.37244 

-0.045379      
0.34782 

-0.053160     
0.071429 

0.032590     
0.028507 

1994 0.69797*      
0.15891 

0.21021      
0.36747 

-0.044004      
0.34823 

-0.059409     
0.071550 

0.031180     
0.028703 

1995 0.69893*      
0.15717 

0.24481      
0.36367 

-0.015972      
0.34912 

-0.065772     
0.071852 

0.029558     
0.028980 

1996 0.70206*      
0.15537 

0.30647      
0.35468 

0.0032872      
0.35065 

-0.069394     
0.071575 

0.027529     
0.028999 

1997 0.70536*      
0.15397 

0.34259      
0.34895 

0.013560      
0.35115 

-0.073143     
0.071425 

0.025601     
0.029056 

1998 0.70829*      
0.15303 

0.34373      
0.34948 

0.034576      
0.35061 

-0.075647     
0.071265 

0.025295     
0.029045 

1999 0.71339*      
0.15134 

0.34995      
0.34903 

0.038895      
0.35057 

-0.077114     
0.071472 

0.025309     
0.029160 

2000 0.71864*      
0.14971 

0.36288      
0.34643 

0.050988      
0.35063 

-0.077383     
0.071436 

0.024155     
0.029195 

2001 0.73508*      
0.14491 

0.35429      
0.34790 

0.068604      
0.35010 

-0.076838     
0.071115 

0.024386     
0.029058 

2002 0.73847*      
0.14366 

0.36567      
0.34520 

0.060789      
0.35079 

-0.074636     
0.070702 

0.024301     
0.028867 

2003 0.73497*      
0.14424 

0.38933      
0.34085 

0.029011      
0.35294 

-0.070626     
0.070391 

0.025111     
0.028667 

2004 0.74884*      
0.13956 

0.42820      
0.33090 

0.025418      
0.35149 

-0.069429     
0.070367 

0.023532     
0.028713 

Note: For each order of spatial autocorrelation, the estimated parameters are reported with their corresponding standard 
errors listed in below. Only the parameters of the first lag are statistically significant. 
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Table A.4 Spatial Partial Autocorrelation Function 
 

Order 
Year 

1 2 3 4 5 

1978 0.59781* 
0.19937 

-0.20361      
0.28610 

0.047316      
0.26454 

-0.024851     
0.075238 

0.035967     
0.030968 

1979 0.62310*      
0.19309 

-0.21060      
0.27984 

0.091701      
0.25601 

-0.026122     
0.072118 

0.028800     
0.029759 

1980 0.60763*      
0.19673 

-0.20272      
0.28467 

0.085174      
0.25984 

-0.033334     
0.072888 

0.034894     
0.029951 

1981 0.63282*      
0.19058 

-0.24132      
0.28197 

0.045433      
0.25845 

-0.038965     
0.069446 

0.030865     
0.028530 

1982 0.62527*      
0.19369 

-0.23329      
0.28378 

-0.0054501      
0.26345 

-0.045762     
0.067529 

0.030388     
0.027673 

1983 0.64314*      
0.18802 

-0.17384      
0.27277 

0.0061327      
0.25290 

-0.039279     
0.065634 

0.029224     
0.026931 

1984 0.65738*      
0.18224 

-0.16225      
0.26742 

-0.0022774      
0.25062 

-0.049439     
0.063335 

0.030538     
0.025870 

1985 0.66053*      
0.18136 

-0.17068      
0.26765 

0.0051042      
0.25044 

-0.051514     
0.061751 

0.029163     
0.025229 

1986 0.67817*      
0.17509 

-0.16213      
0.26054 

0.029336      
0.24127 

-0.047948     
0.060030 

0.028430     
0.024579 

1987 0.67326*      
0.17521 

-0.12827      
0.26059 

0.043406      
0.23811 

-0.048993     
0.059459 

0.029393     
0.024379 

1988 0.66374*      
0.17737 

-0.11846      
0.26361 

0.074371      
0.23911 

-0.046157     
0.059741 

0.030205     
0.024573 

1989 0.62478*      
0.18776 

-0.089866      
0.27418 

0.072829      
0.24929 

-0.048917     
0.061321 

0.032439     
0.025024 

1990 0.62347*      
0.18734 

-0.11181      
0.27616 

0.079271      
0.25037 

-0.052534     
0.060583 

0.033945     
0.024657 

1991 0.62472*      
0.18500 

-0.10417      
0.27612 

0.060929      
0.24868 

-0.055574     
0.060462 

0.034240     
0.024729 

1992 0.67186*      
0.17108 

-0.14046      
0.26581 

0.055864      
0.23674 

-0.060917     
0.057176 

0.033067     
0.023419 

1993 0.68706*      
0.16398 

-0.10178      
0.26040 

0.042754      
0.22927 

-0.063292     
0.055460 

0.031747     
0.022821 

1994 0.69797*      
0.15891 

-0.082320      
0.25648 

0.044027      
0.22388 

-0.067929     
0.054344 

0.032413     
0.022372 

1995 0.69893*      
0.15717 

-0.069695      
0.25597 

0.059523      
0.22142 

-0.072847     
0.053954 

0.033268     
0.022199 

1996 0.70206*      
0.15537 

-0.044160      
0.25419 

0.062472      
0.21877 

-0.074869     
0.053211 

0.033205     
0.021922 

1997 0.70536*      
0.15397 

-0.031574      
0.25318 

0.063959      
0.21678 

-0.077412     
0.052679 

0.032567     
0.021734 

1998 0.70829*      
0.15303 

-0.036478      
0.25314 

0.076683      
0.21528 

-0.079767     
0.052149 

0.032877     
0.021506 

1999 0.71339*      
0.15134 

-0.040500      
0.25222 

0.080669      
0.21374 

-0.081067     
0.051819 

0.033305     
0.021353 

2000 0.71864*      
0.14971 

-0.039968      
0.25054 

0.084820      
0.21174 

-0.080713     
0.051358 

0.032488     
0.021219 

2001 0.73508*      
0.14491 

-0.066958      
0.24681 

0.10219      
0.20701 

-0.080617     
0.049743 

0.032523     
0.020512 

2002 0.73847*      
0.14366 

-0.060727      
0.24451 

0.094301      
0.20612 

-0.078790     
0.049249 

0.032316     
0.020339 

2003 0.73497*      
0.14424 

-0.039318      
0.24400 

0.069945      
0.20843 

-0.075864     
0.049455 

0.032377     
0.020506 

2004 0.74884*      
0.13956 

-0.033043      
0.23809 

0.063073      
0.20207 

-0.073479     
0.048414 

0.030573     
0.020229 

Note: For each order of spatial autocorrelation, the estimated parameters are reported with their corresponding standard 
errors listed underneath. Only the parameters of the first lag are statistically significant.  
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Table A.5 Parameter Estimates: Spatial Dependence in the Mean 
)I,0(normal.d.i.i~,Wyy 2

ttttttt σεε+ρ+α=  
 
 α ρ Log-Likelihood R2 Estimated 

Standard Error 
1978 2.4376      

0.87014 
0.59781      
0.14455 

-21.647 0.26255 0.47292  
       

1979 2.3092      
0.81658 

0.62310      
0.13431 

-21.136 0.28637 0.46242 

1980 2.4310      
0.79636 

0.60755      
0.13027 

-21.580 0.27228 0.47091 

1981 2.2996      
0.73284 

0.63283      
0.11816 

-20.514 0.29616 0.45195 

1982 2.3777      
0.71527 

0.62527      
0.11417 

-19.721 0.28666 0.44092 

1983 2.3017      
0.70764 

0.64314      
0.11144 

-19.369 0.30608 0.43398 

1984 2.2609      
0.67991 

0.65734      
0.10526 

-19.154 0.32464 0.42941 

1985 2.2763      
0.61675 

0.66053     
0.094391 

-18.960 0.32796 0.42630 

1986 2.1794      
0.56022 

0.67816     
0.085604 

-18.632 0.34993 0.41976 

1987 2.2384      
0.53826 

0.67326     
0.082172 

-18.667 0.34762 0.42080 

1988 2.3305      
0.51872 

0.66374     
0.079446 

-19.166 0.33838 0.42890 

1989 2.6032      
0.56283 

0.62500     
0.085726 

-19.545 0.29782 0.43836 

1990 2.6279      
0.57341 

0.62347     
0.085978 

-19.356 0.29772 0.43575   

1991 2.6444      
0.56257 

0.62473     
0.084505 

-19.668 0.30296 0.44019 

1992 2.3648      
0.50597 

0.67186     
0.075391 

-19.402 0.35706 0.43138 

1993 2.2968      
0.49327 

0.68706     
0.072006 

-19.367 0.38210 0.42915 

1994 2.2527      
0.50731 

0.69797     
0.072871 

-19.602 0.40071 0.43123 

1995 2.2737      
0.55431 

0.69893     
0.078613 

-20.065 0.40622 0.43782 

1996 2.2778      
0.57304 

0.70209     
0.080085 

-20.213 0.41282 0.43959 

1997 2.2804      
0.58064 

0.70536     
0.080131 

-20.437 0.41836 0.44247 

1998 2.2810      
0.59639 

0.70828     
0.081410 

-20.640 0.42236 0.44510 

1999 2.2646      
0.60220 

0.71339     
0.081496 

-20.910 0.42951 0.44846 

2000 2.2463      
0.60667 

0.71867     
0.081304 

-21.059 0.43657 0.44998 

2001 2.1410      
0.59398 

0.73507     
0.078559 

-20.815 0.45755 0.44408 

2002 2.1386      
0.60587 

0.73845     
0.079122 

-20.835 0.46280 0.44389 

2003 2.1926      
0.63165 

0.73498     
0.081386 

-21.060 0.45987 0.44774 

2004 2.1058      
0.62774 

0.74884     
0.079588 

-21.007 0.47994 0.44494 

Note: The estimated parameter of α and ρ are reported with their corresponding standard errors listed 
underneath. 
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Table A.6 Parameter Estimates: Spatial Dependence in the Mean and Variance 
)I,0(normal.d.i.i~/,Wyy ttttttt σεε+ρ+α=  

2
tt

2
ttt

2
t WW)1( σδ+εδ−+ς=σ  

 
 α ρ ς δ Log-

Likelihood 
R2 

1978 2.7793      
0.91165 

0.52479      
0.15991 

6.3179e-014  
3.4536e-015 

0.61938     
0.054037 

-13.936 0.23916 

1979 3.0164       
1.0956 

0.48760      
0.18972 

6.8546e-016  
4.3871e-016 

0.57879     
0.066121 

-12.261 0.23919 

1980 3.8776       
1.3135 

0.34853      
0.22391 

8.4965e-014  
1.7992e-015 

0.60633     
0.070619 

-14.693 0.17691 

1981 3.5923       
1.1641 

0.40340      
0.19666 

4.5598e-013  
7.1542e-015 

0.62990     
0.060266 

-14.224 0.21010 

1982 3.2891      
0.93354 

0.46253      
0.15564 

1.8841e-014  
2.8301e-015 

0.64753     
0.049157 

-12.843 0.22882 

1983 2.8995      
0.92534 

0.53273      
0.15305 

3.4796e-015  
5.7863e-016 

0.60858     
0.056140 

-11.271 0.26708 

1984 3.1459       
1.0310 

0.50412      
0.16626 

4.8041e-015  
7.6162e-016 

0.62391     
0.055245 

-12.162 0.26783 

1985 3.5697       
1.0625 

0.44672      
0.16736 

2.2222e-015  
7.3795e-016 

0.60668     
0.059851 

-12.216 0.24515 

1986 3.2929       
1.0276 

0.49354      
0.16028 

1.7048e-014  
4.2368e-016 

0.58770     
0.064821 

-11.630 0.27798 

1987 3.3508       
1.0502 

0.48963      
0.16246 

1.7965e-015  
4.6418e-016 

0.58820     
0.064431 

-12.070 0.27657 

1988 3.5555      
0.99852 

0.46534      
0.15268 

4.8252e-020  
5.7043e-016 

0.56920     
0.063485 

-12.773 0.26181 

1989 3.8364      
0.98238 

0.42652      
0.14907 

7.9370e-017  
6.6643e-016 

0.58674     
0.060847 

-13.576 0.22526 

1990 3.8111      
0.95501 

0.43520      
0.14468 

5.7020e-018  
7.4906e-016 

0.60595     
0.058602 

-13.755 0.22950 

1991 3.8259      
0.92523 

0.43836      
0.13914 

8.2771e-017  
9.0571e-016 

0.62734     
0.052040 

-14.559 0.23527 

1992 3.6429      
0.93974 

0.47384      
0.13914 

1.1920e-014  
9.7026e-016 

0.62892     
0.055937 

-14.905 0.27967 

1993 3.4602      
0.95133 

0.50791      
0.13897 

1.5989e-014  
8.2375e-016 

0.64601     
0.060864 

-15.348 0.31178 

1994 3.4242      
0.97918 

0.51969      
0.14128 

1.2832e-013  
6.6375e-016 

0.63858     
0.065619 

-15.724 0.32992 

1995 3.4769      
0.97315 

0.51834      
0.13850 

5.2022e-017  
6.5888e-016 

0.62410     
0.066132 

-16.029 0.33433 

1996 3.2928      
0.91571 

0.55013      
0.12850 

1.1071e-016  
6.1858e-016 

0.62373     
0.062257 

-16.164 0.35371 

1997 3.3113      
0.95012 

0.55345      
0.13166 

6.0857e-017  
6.4485e-016 

0.62902     
0.061922 

-16.544 0.35910 

1998 3.2525      
0.95137 

0.56583      
0.13058 

6.2323e-015  
6.3620e-016 

0.62584     
0.062950 

-16.622 0.36711 

1999 3.2271      
0.95371 

0.57322      
0.12969 

2.9402e-014  
6.1388e-016 

0.62130     
0.063761 

-16.857 0.37500 

2000 3.2002      
0.93732 

0.58121      
0.12583 

2.9013e-015  
6.4301e-016 

0.61939     
0.061824 

-16.972 0.38297 

2001 3.0425      
0.95631 

0.60624      
0.12715 

1.6489e-016  
5.7401e-016 

0.61070     
0.066009 

-16.583 0.40689 

2002 2.9634      
0.92763 

0.62098      
0.12181 

8.9198e-015  
4.9797e-016 

0.59559     
0.067501 

-16.341 0.41699 

2003 2.9311      
0.90559 

0.63040      
0.11712 

3.2132e-019  
5.0237e-016 

0.57893     
0.067391 

-16.326 0.41980 

2004 2.5684      
0.78989 

0.68049      
0.10060 

1.0680e-014  
4.1094e-016 

0.56993     
0.068942 

-15.826 0.45442 

Note: The estimated parameter of α and ρ (in the mean) and ς and δ (in the variance) are reported with their 
corresponding standard errors listed underneath. 
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Table A.7 Parameter Estimates: Spatial Dependence in the Mean and Variance 
)I,0(normal.d.i.i~/,Wyy ttttttt σεε+ρ+α=  

2
tt

2
ttt

2
t WW σδ+εγ+ς=σ  

 
 α ρ ς γ δ Log-

Likelihood 
R2 

1978 2.8268      
0.69723 

0.51556      
0.12112 

9.2322e-016  
1.2471e-015 

0.55335      
0.15849 

0.57002     
0.047305 

-13.485 0.23602 

1979 3.0204      
0.86376  

0.48632      
0.14889 

4.8665e-017  
5.2278e-016 

0.59746      
0.15977 

0.53113     
0.045787 

-11.851 0.23870 

1980 3.7134       
1.0967 

0.37575      
0.18635 

2.0565e-015  
1.1811e-015  

0.55692      
0.14552 

0.56527     
0.055472 

-14.253 0.18838 

1981 3.4718      
0.96613  

0.42284      
0.16248 

5.0318e-016  
1.7521e-015 

0.51586      
0.14322 

0.59377     
0.053114 

-13.809 0.21833 

1982 3.2846      
0.76379  

0.46241      
0.12649 

5.2586e-014  
1.6118e-015 

0.47953      
0.13732 

0.61359     
0.046495 

-12.505 0.22877 

1983 2.9798      
0.74364  

0.51881      
0.12241 

4.2897e-016  
8.3657e-016 

0.52302      
0.14264 

0.57177     
0.044240 

-10.991 0.26176 

1984 3.1894      
0.84282  

0.49636      
0.13529 

8.6007e-016  
1.0568e-015 

0.49830      
0.13169 

0.59056     
0.046036 

-11.885 0.26464 

1985 3.5407      
0.88896  

0.45066      
0.13955 

3.7123e-017  
1.0665e-015 

0.51172      
0.13420 

0.57588     
0.048865 

-11.963 0.24688 

1986 3.2878      
0.86106  

0.49380      
0.13406 

6.2636e-017  
6.6382e-016 

0.53345      
0.14228 

0.55454     
0.051861 

-11.401 0.27810 

1987 3.3622      
0.89768  

0.48741      
0.13878 

1.8904e-015  
7.2083e-016 

0.52767      
0.14589 

0.55515     
0.056008 

-11.864 0.27560 

1988 3.5633      
0.87035  

0.46376      
0.13313 

2.6086e-016  
8.1214e-016 

0.53697      
0.15035 

0.53902     
0.056743 

-12.610 0.26112 

1989 3.8422      
0.84475  

0.42513      
0.12822 

4.8434e-017  
9.7751e-016 

0.52024      
0.14602 

0.55661     
0.056190 

-13.396 0.22468 

1990 3.8239      
0.82176  

0.43271      
0.12445 

1.6008e-015  
1.0759e-015 

0.49903      
0.13722 

0.57625     
0.055691 

-13.564 0.22847 

1991 3.8389      
0.80663  

0.43589      
0.12119 

4.9557e-017  
1.2634e-015 

0.46404      
0.12588 

0.60104     
0.055251 

-14.395 0.23424 

1992 3.6557      
0.82916  

0.47148      
0.12272 

7.7203e-015  
1.3378e-015 

0.45712      
0.12787 

0.60343     
0.063641 

-14.759 0.27860 

1993 3.4705      
0.82603  

0.50598      
0.12053 

8.4874e-017  
1.2918e-015 

0.43702      
0.12426 

0.62131     
0.068771 

-15.199 0.31091 

1994 3.4263      
0.85445 

0.51903      
0.12319 

7.8952e-015  
1.1950e-015 

0.44003      
0.12659 

0.61479     
0.073149 

-15.596 0.32962 

1995 3.4680      
0.86069 

0.51931      
0.12243 

1.6578e-016  
1.1438e-015 

0.44823      
0.12698 

0.60188     
0.072877 

-15.928 0.33478 

1996 3.2884      
0.80825 

0.55045      
0.11330 

3.7234e-015  
1.0862e-015 

0.44909      
0.12213 

0.60113     
0.067858 

-16.063 0.35386 

1997 3.3006      
0.83304 

0.55462      
0.11531 

1.7465e-016  
1.1602e-015 

0.44402      
0.11930 

0.60675     
0.067277 

-16.437 0.35963 

1998 3.2452      
0.83814 

0.56656      
0.11492 

2.6924e-017  
1.1071e-015 

0.44546      
0.11832 

0.60366     
0.067308 

-16.523 0.36744 

1999 3.2200      
0.84391 

0.57394      
0.11463 

2.8598e-015  
1.0842e-015 

0.44819      
0.11768 

0.59954     
0.067523 

-16.765 0.37531 

2000 3.1914      
0.83012 

0.58217      
0.11128 

1.8296e-016  
1.0943e-015 

0.45061      
0.11723 

0.59738     
0.066065 

-16.881 0.38340 

2001 3.0341      
0.84819 

0.60714      
0.11263 

8.1927e-015  
9.7319e-016 

0.46005      
0.11973 

0.58796     
0.068542 

-16.496 0.40729 

2002 2.9587      
0.82735 

0.62138      
0.10851 

3.2891e-015  
8.3513e-016 

0.47698      
0.12294 

0.57172     
0.068562 

-16.260 0.41716 

2003 2.9282      
0.81747 

0.63058      
0.10558 

4.5081e-019  
7.9296e-016 

0.49234      
0.12121 

0.55543     
0.065775 

-16.253 0.41988 

2004 2.5745      
0.72089 

0.67958     
0.091661 

5.4595e-016  
6.1651e-016 

0.49908      
0.11930 

0.54677     
0.064336 

-15.762 0.45405 

Note: The estimated parameter of α and ρ (in the mean) and ς, γ, and δ (in the variance) are reported with their corresponding 
standard errors listed underneath. 
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